YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Beamforming Based on Amplitude Coherence Applied to Ultrasonic Imaging of Coarse-Grained Steels

    Source: Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems:;2023:;volume( 006 ):;issue: 004::page 41001-1
    Author:
    Carcreff, Ewen
    ,
    Laroche, Nans
    ,
    Varray, Francois
    ,
    Nicolas, Barbara
    DOI: 10.1115/1.4056898
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper deals with ultrasonic imaging in a nondestructive evaluation (NDE) context. In particular, we are focused on the inspection of coarse-grained steels having a heterogeneous composition that creates structural noise in the ultrasonic signals and images. The standard way to beamform the acquired ultrasonic data is by delay-and-sum (DAS). This method is fast but suffers from low signal-to-noise ratio (SNR) for coarse-grained steel inspection. In this paper, we propose to adapt a coherence-based beamformer called pDAS from the medical imaging community. pDAS beamforming is based on DAS structure but includes p-root and p-power before and after summations, respectively. It results in an enhancement of the coherent summation of signals that improves both resolution and contrast. Coherence-based beamformers are known to enhance information whose acoustic response correlates with geometrical information, that is why they decrease grating lobes and side lobes, specular echoes, reconstruction artifacts, and noise due to multiple scattering. In this paper, the pDAS beamformer is proposed for two common acquisition schemes employed in NDE that are plane wave imaging (PWI) and full matrix capture (FMC). The beamformers have been efficiently implemented for parallel computing on graphics processing unit (GPU) in a context of real-time imaging and fast part scanning in NDE. First, experimental results are presented from an austenitic-ferritic sample from the power generation industry that contains side drilled holes (SDH) with diameter 0.4 mm at several depths. pDAS (for p from two to three) shows improvements in terms of SNR and resolution compared to standard DAS, both in PWI and FMC modalities. We also show that the computation cost of pDAS is equivalent to DAS. A real application on a sample containing a fatigue crack connected to the backwall is exposed. We show that pDAS beamformer can enhance crack response compared to grains, but it also decreases unwanted information such as backwall specular echoes and reconstruction artifacts.
    • Download: (1.607Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Beamforming Based on Amplitude Coherence Applied to Ultrasonic Imaging of Coarse-Grained Steels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294861
    Collections
    • Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems

    Show full item record

    contributor authorCarcreff, Ewen
    contributor authorLaroche, Nans
    contributor authorVarray, Francois
    contributor authorNicolas, Barbara
    date accessioned2023-11-29T19:33:33Z
    date available2023-11-29T19:33:33Z
    date copyright2/28/2023 12:00:00 AM
    date issued2/28/2023 12:00:00 AM
    date issued2023-02-28
    identifier issn2572-3901
    identifier othernde_6_4_041001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294861
    description abstractThis paper deals with ultrasonic imaging in a nondestructive evaluation (NDE) context. In particular, we are focused on the inspection of coarse-grained steels having a heterogeneous composition that creates structural noise in the ultrasonic signals and images. The standard way to beamform the acquired ultrasonic data is by delay-and-sum (DAS). This method is fast but suffers from low signal-to-noise ratio (SNR) for coarse-grained steel inspection. In this paper, we propose to adapt a coherence-based beamformer called pDAS from the medical imaging community. pDAS beamforming is based on DAS structure but includes p-root and p-power before and after summations, respectively. It results in an enhancement of the coherent summation of signals that improves both resolution and contrast. Coherence-based beamformers are known to enhance information whose acoustic response correlates with geometrical information, that is why they decrease grating lobes and side lobes, specular echoes, reconstruction artifacts, and noise due to multiple scattering. In this paper, the pDAS beamformer is proposed for two common acquisition schemes employed in NDE that are plane wave imaging (PWI) and full matrix capture (FMC). The beamformers have been efficiently implemented for parallel computing on graphics processing unit (GPU) in a context of real-time imaging and fast part scanning in NDE. First, experimental results are presented from an austenitic-ferritic sample from the power generation industry that contains side drilled holes (SDH) with diameter 0.4 mm at several depths. pDAS (for p from two to three) shows improvements in terms of SNR and resolution compared to standard DAS, both in PWI and FMC modalities. We also show that the computation cost of pDAS is equivalent to DAS. A real application on a sample containing a fatigue crack connected to the backwall is exposed. We show that pDAS beamformer can enhance crack response compared to grains, but it also decreases unwanted information such as backwall specular echoes and reconstruction artifacts.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNonlinear Beamforming Based on Amplitude Coherence Applied to Ultrasonic Imaging of Coarse-Grained Steels
    typeJournal Paper
    journal volume6
    journal issue4
    journal titleJournal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
    identifier doi10.1115/1.4056898
    journal fristpage41001-1
    journal lastpage41001-9
    page9
    treeJournal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems:;2023:;volume( 006 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian