YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Early-Stage Fatigue Damage in Metal Plates Using Quasi-Static Components of Low-Frequency Lamb Waves

    Source: Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems:;2023:;volume( 006 ):;issue: 003::page 31003-1
    Author:
    Wu, Kun
    ,
    Xu, Caibin
    ,
    Deng, Mingxi
    DOI: 10.1115/1.4062651
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Nonlinear Lamb waves including second harmonic and acoustic-radiation-induced quasi-static components (QSC) have a potential for accurately evaluating early-stage fatigue damage. Most previous studies focus on second-harmonic-based techniques that require phase velocity matching and are hard to isolate interferences from ultrasonic testing systems. The aforementioned requirement and deficiency limit applications of the second-harmonic-based techniques. In this study, a QSC-based technique of low-frequency Lamb waves is proposed for early-stage fatigue damage evaluation of metal plates, which does not need to require phase velocity matching and can remove interferences from ultrasonic testing systems. Both in simulations and in experiments, the primary Lamb wave mode at a low frequency that meets approximate group velocity matching with the generated QSC is selected. In finite element simulations, different levels of material nonlinearities by changing the third-order elastic constants are used to characterize levels of fatigue damage. Numerical results show that the magnitude of the generated QSC pulse increases with the levels of fatigue damage. Early-stage fatigue damage in aluminum plates with different fatigue cycles is further experimentally evaluated. The generated QSC pulse is extracted from received time-domain signals using the phase-inversion technique and low-pass digital filtering processing. The curve of the normalized relative acoustic nonlinearity parameter versus the cyclic loading number is obtained. Numerical simulations and experimental results show that the early-stage fatigue damage in aluminum plates can effectively be evaluated using the QSC generated by low-frequency Lamb waves.
    • Download: (1.135Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Early-Stage Fatigue Damage in Metal Plates Using Quasi-Static Components of Low-Frequency Lamb Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294857
    Collections
    • Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems

    Show full item record

    contributor authorWu, Kun
    contributor authorXu, Caibin
    contributor authorDeng, Mingxi
    date accessioned2023-11-29T19:33:16Z
    date available2023-11-29T19:33:16Z
    date copyright6/13/2023 12:00:00 AM
    date issued6/13/2023 12:00:00 AM
    date issued2023-06-13
    identifier issn2572-3901
    identifier othernde_6_3_031003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294857
    description abstractNonlinear Lamb waves including second harmonic and acoustic-radiation-induced quasi-static components (QSC) have a potential for accurately evaluating early-stage fatigue damage. Most previous studies focus on second-harmonic-based techniques that require phase velocity matching and are hard to isolate interferences from ultrasonic testing systems. The aforementioned requirement and deficiency limit applications of the second-harmonic-based techniques. In this study, a QSC-based technique of low-frequency Lamb waves is proposed for early-stage fatigue damage evaluation of metal plates, which does not need to require phase velocity matching and can remove interferences from ultrasonic testing systems. Both in simulations and in experiments, the primary Lamb wave mode at a low frequency that meets approximate group velocity matching with the generated QSC is selected. In finite element simulations, different levels of material nonlinearities by changing the third-order elastic constants are used to characterize levels of fatigue damage. Numerical results show that the magnitude of the generated QSC pulse increases with the levels of fatigue damage. Early-stage fatigue damage in aluminum plates with different fatigue cycles is further experimentally evaluated. The generated QSC pulse is extracted from received time-domain signals using the phase-inversion technique and low-pass digital filtering processing. The curve of the normalized relative acoustic nonlinearity parameter versus the cyclic loading number is obtained. Numerical simulations and experimental results show that the early-stage fatigue damage in aluminum plates can effectively be evaluated using the QSC generated by low-frequency Lamb waves.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEvaluation of Early-Stage Fatigue Damage in Metal Plates Using Quasi-Static Components of Low-Frequency Lamb Waves
    typeJournal Paper
    journal volume6
    journal issue3
    journal titleJournal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
    identifier doi10.1115/1.4062651
    journal fristpage31003-1
    journal lastpage31003-9
    page9
    treeJournal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems:;2023:;volume( 006 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian