YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Computational Analysis of Fractional Liénard's Equation With Exponential Memory

    Source: Journal of Computational and Nonlinear Dynamics:;2023:;volume( 018 ):;issue: 004::page 41004-1
    Author:
    Singh, Jagdev
    ,
    Alshehri, Ahmed M.
    ,
    Sushila
    ,
    Kumar, Devendra
    DOI: 10.1115/1.4056858
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The fractional model of Liénard's equations is very useful in the study of oscillating circuits. The main aim of this article is to investigate a fractional extension of Liénard's equation by using a fractional operator with exponential kernel. A user friendly analytical algorithm is suggested to obtain the solutions of fractional model of Liénard's equation. The considered computational technique is a combination of q-homotopy analysis method and an integral transform approach. The outcomes of the investigation presented in graphical and tabular forms, which reveal that the suggested computational scheme is very accurate and useful for handling such type of fractional order nonlinear mathematical models.
    • Download: (994.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Computational Analysis of Fractional Liénard's Equation With Exponential Memory

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294778
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorSingh, Jagdev
    contributor authorAlshehri, Ahmed M.
    contributor authorSushila
    contributor authorKumar, Devendra
    date accessioned2023-11-29T19:27:48Z
    date available2023-11-29T19:27:48Z
    date copyright3/7/2023 12:00:00 AM
    date issued3/7/2023 12:00:00 AM
    date issued2023-03-07
    identifier issn1555-1415
    identifier othercnd_018_04_041004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294778
    description abstractThe fractional model of Liénard's equations is very useful in the study of oscillating circuits. The main aim of this article is to investigate a fractional extension of Liénard's equation by using a fractional operator with exponential kernel. A user friendly analytical algorithm is suggested to obtain the solutions of fractional model of Liénard's equation. The considered computational technique is a combination of q-homotopy analysis method and an integral transform approach. The outcomes of the investigation presented in graphical and tabular forms, which reveal that the suggested computational scheme is very accurate and useful for handling such type of fractional order nonlinear mathematical models.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComputational Analysis of Fractional Liénard's Equation With Exponential Memory
    typeJournal Paper
    journal volume18
    journal issue4
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4056858
    journal fristpage41004-1
    journal lastpage41004-6
    page6
    treeJournal of Computational and Nonlinear Dynamics:;2023:;volume( 018 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian