YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Studies on the Effect of Substrate Preheating, Interlayer Dwell, and Heat Treatment on Microstructure, Residual Stress, and Mechanical Properties of IN625 Superalloy Built by Direct Metal Deposition

    Source: Journal of Engineering Materials and Technology:;2023:;volume( 145 ):;issue: 004::page 41004-1
    Author:
    Mohsin Khan, K.
    ,
    Rao, Thella Babu
    ,
    Manjunath, B. N.
    ,
    Abhinav, K.
    ,
    Vinod, A. R.
    ,
    Mohammed, Raffi
    DOI: 10.1115/1.4062503
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this investigation, IN625 alloy samples were processed by the directed energy deposition (DED) approach under various metal deposition strategies such as substrate preheating, interlayer dwell and with combined substrate preheating, interlayer dwell, as well as postheat treatment. The processed sample’s microstructural characteristics, residual stress, microhardness, and tensile properties are assessed in comparison to the manufacturing strategies. Rapid heat dissipation caused finer microstructure near the substrate. There is a growth of columnar grain structure epitaxially in the build direction. The progressive microstructure change seen in the build direction across the cross section was due to the gradual rise of heat accumulation between subsequent layers. The interdendritic zones contained Laves phases. Laves phases have a high Nb, Mo, as well as Si content, according to the energy-dispersive spectroscope (EDS) spectrum. The field emission scanning microscopy (FESEM) microstructural morphology of the deposited samples after their postheat treatment has shown a new microstructure with the combination of equiaxed (recrystallized) and columnar dendritic structure with the reconstruction of columnar dendritic solidification microstructure into equiaxed grains. Heat treatment caused the Laves phases to dissolve in the matrix of IN625 alloy, which led to the precipitation of nanometric γ″ phases. The deposition strategies with substrate preheating significantly decreased the residual stress with moderately improved mechanical properties. The combination of substrate preheating, interlayer dwell, and postheat treatment has shown an outstanding reduction of residual stress along with a remarkable improvement in tensile strength with the retainment of an equivalent ductility compared with other strategies.
    • Download: (2.245Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Studies on the Effect of Substrate Preheating, Interlayer Dwell, and Heat Treatment on Microstructure, Residual Stress, and Mechanical Properties of IN625 Superalloy Built by Direct Metal Deposition

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294775
    Collections
    • Journal of Engineering Materials and Technology

    Show full item record

    contributor authorMohsin Khan, K.
    contributor authorRao, Thella Babu
    contributor authorManjunath, B. N.
    contributor authorAbhinav, K.
    contributor authorVinod, A. R.
    contributor authorMohammed, Raffi
    date accessioned2023-11-29T19:27:37Z
    date available2023-11-29T19:27:37Z
    date copyright5/23/2023 12:00:00 AM
    date issued5/23/2023 12:00:00 AM
    date issued2023-05-23
    identifier issn0094-4289
    identifier othermats_145_4_041004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294775
    description abstractIn this investigation, IN625 alloy samples were processed by the directed energy deposition (DED) approach under various metal deposition strategies such as substrate preheating, interlayer dwell and with combined substrate preheating, interlayer dwell, as well as postheat treatment. The processed sample’s microstructural characteristics, residual stress, microhardness, and tensile properties are assessed in comparison to the manufacturing strategies. Rapid heat dissipation caused finer microstructure near the substrate. There is a growth of columnar grain structure epitaxially in the build direction. The progressive microstructure change seen in the build direction across the cross section was due to the gradual rise of heat accumulation between subsequent layers. The interdendritic zones contained Laves phases. Laves phases have a high Nb, Mo, as well as Si content, according to the energy-dispersive spectroscope (EDS) spectrum. The field emission scanning microscopy (FESEM) microstructural morphology of the deposited samples after their postheat treatment has shown a new microstructure with the combination of equiaxed (recrystallized) and columnar dendritic structure with the reconstruction of columnar dendritic solidification microstructure into equiaxed grains. Heat treatment caused the Laves phases to dissolve in the matrix of IN625 alloy, which led to the precipitation of nanometric γ″ phases. The deposition strategies with substrate preheating significantly decreased the residual stress with moderately improved mechanical properties. The combination of substrate preheating, interlayer dwell, and postheat treatment has shown an outstanding reduction of residual stress along with a remarkable improvement in tensile strength with the retainment of an equivalent ductility compared with other strategies.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStudies on the Effect of Substrate Preheating, Interlayer Dwell, and Heat Treatment on Microstructure, Residual Stress, and Mechanical Properties of IN625 Superalloy Built by Direct Metal Deposition
    typeJournal Paper
    journal volume145
    journal issue4
    journal titleJournal of Engineering Materials and Technology
    identifier doi10.1115/1.4062503
    journal fristpage41004-1
    journal lastpage41004-12
    page12
    treeJournal of Engineering Materials and Technology:;2023:;volume( 145 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian