YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Surface Integrity Analysis in Grinding of Dual-Phase High-Entropy Alloy

    Source: Journal of Manufacturing Science and Engineering:;2023:;volume( 145 ):;issue: 010::page 101003-1
    Author:
    Wang, Xing
    ,
    Zan, Shusong
    ,
    Xu, Qin
    ,
    Liao, Zhirong
    DOI: 10.1115/1.4062604
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: High-entropy alloys (HEAs) are highly anticipated because of their superb properties in strength, hardness, wear resistance, etc. However, compared with numerous studies on the design and properties of HEAs, the machinability research of HEAs is extremely rare, which limits the application of HEAs. In this work, grinding experiments of (FeCoNi)86Al7Ti7 dual-phase HEA workpieces were carried out, and the results are analyzed from a general machinability perspective (the machining parameters’ effect on grinding force and surface roughness) to a more in-depth perspective, including grinding-induced changes in morphology and microstructure on the ground surface and subsurface. With scanning electron microscope (SEM) and electron backscatter diffraction (EBSD) information of subsurface, the deformation mechanisms have been studied, including the role of the second-phase (Ni2AlTi) in the grinding process, the material removal modes of the different phases, and the morphology of the nanoprecipitates in the matrix, based on the completely opposite properties of different phases in HEA. It is noticed that the hard and brittle property of the second phase brings support to the material, reduces the plastic deformation, and also makes its own removal brittle, while the plastic matrix experiences shear deformation in grinding, which makes the nanoprecipitates in it assume different morphologies. These detailed findings could be of help to understand the effect of grinding on material properties so as to improve the machining quality of this material.
    • Download: (1.575Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Surface Integrity Analysis in Grinding of Dual-Phase High-Entropy Alloy

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294704
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorWang, Xing
    contributor authorZan, Shusong
    contributor authorXu, Qin
    contributor authorLiao, Zhirong
    date accessioned2023-11-29T19:20:30Z
    date available2023-11-29T19:20:30Z
    date copyright6/7/2023 12:00:00 AM
    date issued6/7/2023 12:00:00 AM
    date issued2023-06-07
    identifier issn1087-1357
    identifier othermanu_145_10_101003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294704
    description abstractHigh-entropy alloys (HEAs) are highly anticipated because of their superb properties in strength, hardness, wear resistance, etc. However, compared with numerous studies on the design and properties of HEAs, the machinability research of HEAs is extremely rare, which limits the application of HEAs. In this work, grinding experiments of (FeCoNi)86Al7Ti7 dual-phase HEA workpieces were carried out, and the results are analyzed from a general machinability perspective (the machining parameters’ effect on grinding force and surface roughness) to a more in-depth perspective, including grinding-induced changes in morphology and microstructure on the ground surface and subsurface. With scanning electron microscope (SEM) and electron backscatter diffraction (EBSD) information of subsurface, the deformation mechanisms have been studied, including the role of the second-phase (Ni2AlTi) in the grinding process, the material removal modes of the different phases, and the morphology of the nanoprecipitates in the matrix, based on the completely opposite properties of different phases in HEA. It is noticed that the hard and brittle property of the second phase brings support to the material, reduces the plastic deformation, and also makes its own removal brittle, while the plastic matrix experiences shear deformation in grinding, which makes the nanoprecipitates in it assume different morphologies. These detailed findings could be of help to understand the effect of grinding on material properties so as to improve the machining quality of this material.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSurface Integrity Analysis in Grinding of Dual-Phase High-Entropy Alloy
    typeJournal Paper
    journal volume145
    journal issue10
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4062604
    journal fristpage101003-1
    journal lastpage101003-9
    page9
    treeJournal of Manufacturing Science and Engineering:;2023:;volume( 145 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian