YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis and Design of a Novel Compact Three-Degree-of-Freedom Parallel Robot

    Source: Journal of Mechanisms and Robotics:;2022:;volume( 015 ):;issue: 005::page 51009-1
    Author:
    Zhou, Zhou
    ,
    Gosselin, Clément
    DOI: 10.1115/1.4055965
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper introduces a novel compact three-degree-of-freedom (DOF) parallel robot that will be used as a leg of a 9-DOF kinematically redundant parallel robot. First, the kinematic model of the robot is established based on geometric constraint conditions. Then, the inverse and forward kinematic problems are solved. The inverse problem is straightforward, while the forward problem can be solved analytically by three different approaches. Afterward, a singularity analysis is presented based on the Jacobian matrices derived from the kinematic model. The mathematical conditions for singularities are obtained and their geometric interpretation is given. Finally, the workspace of the robot is analyzed and is shown to correspond to a portion of a torus. The analysis reveals that the robot can have a singularity-free workspace of significant size relative to its footprint provided that some simple limitations are introduced at the design stage.
    • Download: (790Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis and Design of a Novel Compact Three-Degree-of-Freedom Parallel Robot

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294664
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorZhou, Zhou
    contributor authorGosselin, Clément
    date accessioned2023-11-29T19:15:26Z
    date available2023-11-29T19:15:26Z
    date copyright11/24/2022 12:00:00 AM
    date issued11/24/2022 12:00:00 AM
    date issued2022-11-24
    identifier issn1942-4302
    identifier otherjmr_15_5_051009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294664
    description abstractThis paper introduces a novel compact three-degree-of-freedom (DOF) parallel robot that will be used as a leg of a 9-DOF kinematically redundant parallel robot. First, the kinematic model of the robot is established based on geometric constraint conditions. Then, the inverse and forward kinematic problems are solved. The inverse problem is straightforward, while the forward problem can be solved analytically by three different approaches. Afterward, a singularity analysis is presented based on the Jacobian matrices derived from the kinematic model. The mathematical conditions for singularities are obtained and their geometric interpretation is given. Finally, the workspace of the robot is analyzed and is shown to correspond to a portion of a torus. The analysis reveals that the robot can have a singularity-free workspace of significant size relative to its footprint provided that some simple limitations are introduced at the design stage.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnalysis and Design of a Novel Compact Three-Degree-of-Freedom Parallel Robot
    typeJournal Paper
    journal volume15
    journal issue5
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4055965
    journal fristpage51009-1
    journal lastpage51009-10
    page10
    treeJournal of Mechanisms and Robotics:;2022:;volume( 015 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian