YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Folding-Angle Framework for Structural Modeling of Rigid Triangulated Miura-ori Lattices

    Source: Journal of Mechanisms and Robotics:;2022:;volume( 015 ):;issue: 005::page 51004-1
    Author:
    Lahiri, Anandaroop
    ,
    Pratapa, Phanisri P.
    DOI: 10.1115/1.4055742
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Origami is rapidly gaining prominence in the research of metamaterials as it allows for tuning the properties of interest by change in the folded state. Origami-based lattices that allow low-frequency wave-propagation can potentially find use as acoustic metamaterials. Rigid-panel origami tessellations have lattice modes which are exclusively due to the low-energy folding deformations at creases and hence will be suitable for low-frequency wave-propagation applications. Modeling frameworks like bar-and-hinge that are typically used to study origami lattice mechanics allow for panel stretching behavior which is forbidden and redundant in rigid-panel origami lattices. This drives the necessity for an efficient analysis framework dealing exclusively with folding-angles for the study of origami lattices with rigid panels. As a first step in this direction, in this paper, we propose a folding-angle-based analytical framework for structural modeling of infinite lattices of triangulated Miura-ori (an origami pattern studied widely for its metamaterial applications) with rigid panels. We assign rotational stiffness to the creases and analytically derive the stiffness matrix for the lattices based on a minimal number of folding-angle degrees of freedom. Finally, we study the influence of the equilibrium state of folding and the relative crease stiffness on the modal energies, to demonstrate the tunable and programmable nature of the structure. The framework proposed in our work could enable the study of wave dynamics in rigid-panel Miura-ori-based lattices and our findings show significant promise for the future use of 1D origami with rigid panels as acoustic metamaterials.
    • Download: (1.320Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Folding-Angle Framework for Structural Modeling of Rigid Triangulated Miura-ori Lattices

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294659
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorLahiri, Anandaroop
    contributor authorPratapa, Phanisri P.
    date accessioned2023-11-29T19:14:54Z
    date available2023-11-29T19:14:54Z
    date copyright11/24/2022 12:00:00 AM
    date issued11/24/2022 12:00:00 AM
    date issued2022-11-24
    identifier issn1942-4302
    identifier otherjmr_15_5_051004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294659
    description abstractOrigami is rapidly gaining prominence in the research of metamaterials as it allows for tuning the properties of interest by change in the folded state. Origami-based lattices that allow low-frequency wave-propagation can potentially find use as acoustic metamaterials. Rigid-panel origami tessellations have lattice modes which are exclusively due to the low-energy folding deformations at creases and hence will be suitable for low-frequency wave-propagation applications. Modeling frameworks like bar-and-hinge that are typically used to study origami lattice mechanics allow for panel stretching behavior which is forbidden and redundant in rigid-panel origami lattices. This drives the necessity for an efficient analysis framework dealing exclusively with folding-angles for the study of origami lattices with rigid panels. As a first step in this direction, in this paper, we propose a folding-angle-based analytical framework for structural modeling of infinite lattices of triangulated Miura-ori (an origami pattern studied widely for its metamaterial applications) with rigid panels. We assign rotational stiffness to the creases and analytically derive the stiffness matrix for the lattices based on a minimal number of folding-angle degrees of freedom. Finally, we study the influence of the equilibrium state of folding and the relative crease stiffness on the modal energies, to demonstrate the tunable and programmable nature of the structure. The framework proposed in our work could enable the study of wave dynamics in rigid-panel Miura-ori-based lattices and our findings show significant promise for the future use of 1D origami with rigid panels as acoustic metamaterials.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFolding-Angle Framework for Structural Modeling of Rigid Triangulated Miura-ori Lattices
    typeJournal Paper
    journal volume15
    journal issue5
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4055742
    journal fristpage51004-1
    journal lastpage51004-12
    page12
    treeJournal of Mechanisms and Robotics:;2022:;volume( 015 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian