YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Finite Element Implementation of Computational Fluid Dynamics With Reactive Neutral and Charged Solute Transport in FEBio

    Source: Journal of Biomechanical Engineering:;2023:;volume( 145 ):;issue: 009::page 91011-1
    Author:
    Shim, Jay J.
    ,
    Maas, Steve A.
    ,
    Weiss, Jeffrey A.
    ,
    Ateshian, Gerard A.
    DOI: 10.1115/1.4062594
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The objective of this study was to implement a novel fluid-solutes solver into the open-source finite element software FEBio, that extended available modeling capabilities for biological fluids and fluid-solute mixtures. Using a reactive mixture framework, this solver accommodates diffusion, convection, chemical reactions, electrical charge effects, and external body forces, without requiring stabilization methods that were deemed necessary in previous computational implementations of the convection-diffusion-reaction equation at high Peclet numbers. Verification and validation problems demonstrated the ability of this solver to produce solutions for Peclet numbers as high as 1011, spanning the range of physiological conditions for convection-dominated solute transport. This outcome was facilitated by the use of a formulation that accommodates realistic values for solvent compressibility, and by expressing the solute mass balance such that it properly captured convective transport by the solvent and produced a natural boundary condition of zero diffusive solute flux at outflow boundaries. Since this numerical scheme was not necessarily foolproof, guidelines were included to achieve better outcomes that minimize or eliminate the potential occurrence of numerical artifacts. The fluid-solutes solver presented in this study represents an important and novel advancement in the modeling capabilities for biomechanics and biophysics as it allows modeling of mechanobiological processes via the incorporation of chemical reactions involving neutral or charged solutes within dynamic fluid flow. The incorporation of charged solutes in a reactive framework represents a significant novelty of this solver. This framework also applies to a broader range of nonbiological applications.
    • Download: (7.083Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Finite Element Implementation of Computational Fluid Dynamics With Reactive Neutral and Charged Solute Transport in FEBio

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294633
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorShim, Jay J.
    contributor authorMaas, Steve A.
    contributor authorWeiss, Jeffrey A.
    contributor authorAteshian, Gerard A.
    date accessioned2023-11-29T19:10:34Z
    date available2023-11-29T19:10:34Z
    date copyright6/13/2023 12:00:00 AM
    date issued6/13/2023 12:00:00 AM
    date issued2023-06-13
    identifier issn0148-0731
    identifier otherbio_145_09_091011.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294633
    description abstractThe objective of this study was to implement a novel fluid-solutes solver into the open-source finite element software FEBio, that extended available modeling capabilities for biological fluids and fluid-solute mixtures. Using a reactive mixture framework, this solver accommodates diffusion, convection, chemical reactions, electrical charge effects, and external body forces, without requiring stabilization methods that were deemed necessary in previous computational implementations of the convection-diffusion-reaction equation at high Peclet numbers. Verification and validation problems demonstrated the ability of this solver to produce solutions for Peclet numbers as high as 1011, spanning the range of physiological conditions for convection-dominated solute transport. This outcome was facilitated by the use of a formulation that accommodates realistic values for solvent compressibility, and by expressing the solute mass balance such that it properly captured convective transport by the solvent and produced a natural boundary condition of zero diffusive solute flux at outflow boundaries. Since this numerical scheme was not necessarily foolproof, guidelines were included to achieve better outcomes that minimize or eliminate the potential occurrence of numerical artifacts. The fluid-solutes solver presented in this study represents an important and novel advancement in the modeling capabilities for biomechanics and biophysics as it allows modeling of mechanobiological processes via the incorporation of chemical reactions involving neutral or charged solutes within dynamic fluid flow. The incorporation of charged solutes in a reactive framework represents a significant novelty of this solver. This framework also applies to a broader range of nonbiological applications.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFinite Element Implementation of Computational Fluid Dynamics With Reactive Neutral and Charged Solute Transport in FEBio
    typeJournal Paper
    journal volume145
    journal issue9
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4062594
    journal fristpage91011-1
    journal lastpage91011-14
    page14
    treeJournal of Biomechanical Engineering:;2023:;volume( 145 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian