YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Empirical and Computational Fluid Dynamics Analysis of Combustion Performance of a Diesel Engine Fueled With Tomato Seed Oil Biodiesel

    Source: Journal of Energy Resources Technology:;2022:;volume( 145 ):;issue: 004::page 41302-1
    Author:
    Karami, Rahim
    ,
    Rasul, M. G.
    ,
    Khan, M. M. K.
    DOI: 10.1115/1.4055470
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Tomato seed oil biodiesel (TSOB) could be considered as a second-generation and clean-burning renewable substitute for petroleum diesel. It is about 72% by weight of tomato waste, which contains an average of 24% oil. This paper investigated the effects of four different diesel–TSOB blends on the combustion performance of an indirect injection (IDI) diesel engine. In-cylinder pressure (CP) and combustion parameters at five different engine loads and seven speeds were experimentally measured. Then for 2D computational fluid dynamics (CFD) simulation of the emissions and combustion processes, avl fire software was used and the results were evaluated with experimental data. The purpose of the study was to determine the combustion process and its effects on the performance and emissions of the engine. The outcomes for B10 at 100% load addressed that the peak CP of about 67 MPa was found at 1200 revolutions per minute (rpm) which occurred at 13 deg after top dead center (ATDC), while at 2200 rpm the peak CP was 69 MPa and occurred at 1 deg ATDC, and at 2400 rpm the peak CP was found to be about 66 MPa which occurred approximately at the top dead center (TDC). The simulated results found that the peak in-cylinder temperature of 1600 deg K corresponds to the 10% TSOB blend (B10) and the longest mixing-controlled period occurs for B10 at 27 deg crank angle (CA). The simulation also showed that B5 had the longest jet penetration of about 44 mm (at about 100 deg CA) in comparison to 43 mm for B20, 41 mm for B10, and 39.8 mm for B0 (pure diesel) which occurred at less than 100 deg CA. The longest jet penetration duration was found to be about 44 mm for B5 at about 100 deg CA. The results showed that B10 has the biggest accumulative heat release (approximately 1900 J) and the highest fuel energy efficiency. The 2D CFD simulation revealed that the unburnt equivalence ratio in the main combustion chamber is lesser than in the spherical combustion chamber.
    • Download: (1.960Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Empirical and Computational Fluid Dynamics Analysis of Combustion Performance of a Diesel Engine Fueled With Tomato Seed Oil Biodiesel

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294571
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorKarami, Rahim
    contributor authorRasul, M. G.
    contributor authorKhan, M. M. K.
    date accessioned2023-11-29T19:05:22Z
    date available2023-11-29T19:05:22Z
    date copyright11/11/2022 12:00:00 AM
    date issued11/11/2022 12:00:00 AM
    date issued2022-11-11
    identifier issn0195-0738
    identifier otherjert_145_4_041302.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294571
    description abstractTomato seed oil biodiesel (TSOB) could be considered as a second-generation and clean-burning renewable substitute for petroleum diesel. It is about 72% by weight of tomato waste, which contains an average of 24% oil. This paper investigated the effects of four different diesel–TSOB blends on the combustion performance of an indirect injection (IDI) diesel engine. In-cylinder pressure (CP) and combustion parameters at five different engine loads and seven speeds were experimentally measured. Then for 2D computational fluid dynamics (CFD) simulation of the emissions and combustion processes, avl fire software was used and the results were evaluated with experimental data. The purpose of the study was to determine the combustion process and its effects on the performance and emissions of the engine. The outcomes for B10 at 100% load addressed that the peak CP of about 67 MPa was found at 1200 revolutions per minute (rpm) which occurred at 13 deg after top dead center (ATDC), while at 2200 rpm the peak CP was 69 MPa and occurred at 1 deg ATDC, and at 2400 rpm the peak CP was found to be about 66 MPa which occurred approximately at the top dead center (TDC). The simulated results found that the peak in-cylinder temperature of 1600 deg K corresponds to the 10% TSOB blend (B10) and the longest mixing-controlled period occurs for B10 at 27 deg crank angle (CA). The simulation also showed that B5 had the longest jet penetration of about 44 mm (at about 100 deg CA) in comparison to 43 mm for B20, 41 mm for B10, and 39.8 mm for B0 (pure diesel) which occurred at less than 100 deg CA. The longest jet penetration duration was found to be about 44 mm for B5 at about 100 deg CA. The results showed that B10 has the biggest accumulative heat release (approximately 1900 J) and the highest fuel energy efficiency. The 2D CFD simulation revealed that the unburnt equivalence ratio in the main combustion chamber is lesser than in the spherical combustion chamber.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Empirical and Computational Fluid Dynamics Analysis of Combustion Performance of a Diesel Engine Fueled With Tomato Seed Oil Biodiesel
    typeJournal Paper
    journal volume145
    journal issue4
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4055470
    journal fristpage41302-1
    journal lastpage41302-14
    page14
    treeJournal of Energy Resources Technology:;2022:;volume( 145 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian