YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parametric Analysis and Design of a Power Plant to Recover Low-Grade Heat From Data Center Electronics by Using Liquid Nitrogen

    Source: Journal of Energy Resources Technology:;2023:;volume( 145 ):;issue: 012::page 121701-1
    Author:
    Corigliano, O.
    ,
    Florio, G.
    ,
    Fragiacomo, P.
    DOI: 10.1115/1.4062378
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The purpose of this article is to expound recovery of low-grade heat deriving from cooling data center electronics, in order to sustain a thermodynamic cycle of the Rankine type, using cryogenic nitrogen as the working fluid. A novel conception of an energy plant is proposed and considered where these resources are available. The evaporator, built in a closed and thermally insulated vessel, is the key component. Liquid nitrogen is evaporated by means of an immersed serpentine, which provides for thermal power and produces pressurized gas. A supplementary reservoir acts as superheater, as well as buffer. The plant is completed with a turbo-expander that generates power and a pump to recirculate the fluid. A thermodynamic model is developed. A dimensioning procedure for all the subsystems is reported, while a verification analysis is made to detect the maximum pressure that can be exerted. Hence, an in-depth parametric analysis is made for two-plant layout scenarios, based on the presence (1) and absence (2) of the supplementary tank. The simulations are aimed at determining all the operating parameters of the plant, as well as the performance. The results show that pressure is beneficial for performance, presenting scenario 1 as better than scenario 2. The maximum nitrogen pressurization is 12 bar, which corresponds to an electric efficiency of 31.5%, under a thermal supply of 2.79 kW per 1 kW of net electric power produced.
    • Download: (1.046Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parametric Analysis and Design of a Power Plant to Recover Low-Grade Heat From Data Center Electronics by Using Liquid Nitrogen

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294564
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorCorigliano, O.
    contributor authorFlorio, G.
    contributor authorFragiacomo, P.
    date accessioned2023-11-29T19:04:48Z
    date available2023-11-29T19:04:48Z
    date copyright6/13/2023 12:00:00 AM
    date issued6/13/2023 12:00:00 AM
    date issued2023-06-13
    identifier issn0195-0738
    identifier otherjert_145_12_121701.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294564
    description abstractThe purpose of this article is to expound recovery of low-grade heat deriving from cooling data center electronics, in order to sustain a thermodynamic cycle of the Rankine type, using cryogenic nitrogen as the working fluid. A novel conception of an energy plant is proposed and considered where these resources are available. The evaporator, built in a closed and thermally insulated vessel, is the key component. Liquid nitrogen is evaporated by means of an immersed serpentine, which provides for thermal power and produces pressurized gas. A supplementary reservoir acts as superheater, as well as buffer. The plant is completed with a turbo-expander that generates power and a pump to recirculate the fluid. A thermodynamic model is developed. A dimensioning procedure for all the subsystems is reported, while a verification analysis is made to detect the maximum pressure that can be exerted. Hence, an in-depth parametric analysis is made for two-plant layout scenarios, based on the presence (1) and absence (2) of the supplementary tank. The simulations are aimed at determining all the operating parameters of the plant, as well as the performance. The results show that pressure is beneficial for performance, presenting scenario 1 as better than scenario 2. The maximum nitrogen pressurization is 12 bar, which corresponds to an electric efficiency of 31.5%, under a thermal supply of 2.79 kW per 1 kW of net electric power produced.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleParametric Analysis and Design of a Power Plant to Recover Low-Grade Heat From Data Center Electronics by Using Liquid Nitrogen
    typeJournal Paper
    journal volume145
    journal issue12
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4062378
    journal fristpage121701-1
    journal lastpage121701-13
    page13
    treeJournal of Energy Resources Technology:;2023:;volume( 145 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian