contributor author | Lee, Cheolhei | |
contributor author | Wang, Kaiwen | |
contributor author | Wu, Jianguo | |
contributor author | Cai, Wenjun | |
contributor author | Yue, Xiaowei | |
date accessioned | 2023-11-29T18:56:17Z | |
date available | 2023-11-29T18:56:17Z | |
date copyright | 1/10/2023 12:00:00 AM | |
date issued | 1/10/2023 12:00:00 AM | |
date issued | 2023-01-10 | |
identifier issn | 1530-9827 | |
identifier other | jcise_23_4_041009.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4294477 | |
description abstract | Active learning is a subfield of machine learning that focuses on improving the data collection efficiency in expensive-to-evaluate systems. Active learning-applied surrogate modeling facilitates cost-efficient analysis of demanding engineering systems, while the existence of heterogeneity in underlying systems may adversely affect the performance. In this article, we propose the partitioned active learning that quantifies informativeness of new design points by circumventing heterogeneity in systems. The proposed method partitions the design space based on heterogeneous features and searches for the next design point with two systematic steps. The global searching scheme accelerates exploration by identifying the most uncertain subregion, and the local searching utilizes circumscribed information induced by the local Gaussian process (GP). We also propose Cholesky update-driven numerical remedies for our active learning to address the computational complexity challenge. The proposed method consistently outperforms existing active learning methods in three real-world cases with better prediction and computation time. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Partitioned Active Learning for Heterogeneous Systems | |
type | Journal Paper | |
journal volume | 23 | |
journal issue | 4 | |
journal title | Journal of Computing and Information Science in Engineering | |
identifier doi | 10.1115/1.4056567 | |
journal fristpage | 41009-1 | |
journal lastpage | 41009-11 | |
page | 11 | |
tree | Journal of Computing and Information Science in Engineering:;2023:;volume( 023 ):;issue: 004 | |
contenttype | Fulltext | |