YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Non-Surgical Carpal Arch Space Augmentation for Median Nerve Decompression

    Source: Journal of Biomechanical Engineering:;2023:;volume( 145 ):;issue: 008::page 80801-1
    Author:
    Li, Zong-Ming
    DOI: 10.1115/1.4056651
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The carpal tunnel is a tightly bounded space, making the median nerve prone to compression and eventually leading to carpal tunnel syndrome. Carpal tunnel release surgery transects the transverse carpal ligament to expand the tunnel arch space, decompress the median nerve, and relieve the associated symptoms. However, the surgical procedure unavoidably disrupts essential anatomical, biomechanical and physiological functions of the wrist, potentially causing reduced grip strength, pillar pain, carpal bone instability, scar tissue formation, and perineural fibrosis. It is desirable to decompress the median nerve without surgically transecting the transverse carpal ligament. This paper is to review several approaches we have developed for nonsurgical carpal arch space augmentation (CASA), namely, radio ulnar wrist compression, muscle-ligament interaction, palmar pulling, and collagenolysis of the transverse carpal ligament. Briefly summarized is the research work on the CASA topic about theoretical considerations, in vitro and in situ experiment, computational modeling, and human subject studies with asymptomatic and carpal tunnel syndrome hands.
    • Download: (1.581Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Non-Surgical Carpal Arch Space Augmentation for Median Nerve Decompression

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294467
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorLi, Zong-Ming
    date accessioned2023-11-29T18:55:40Z
    date available2023-11-29T18:55:40Z
    date copyright5/22/2023 12:00:00 AM
    date issued5/22/2023 12:00:00 AM
    date issued2023-05-22
    identifier issn0148-0731
    identifier otherbio_145_08_080801.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294467
    description abstractThe carpal tunnel is a tightly bounded space, making the median nerve prone to compression and eventually leading to carpal tunnel syndrome. Carpal tunnel release surgery transects the transverse carpal ligament to expand the tunnel arch space, decompress the median nerve, and relieve the associated symptoms. However, the surgical procedure unavoidably disrupts essential anatomical, biomechanical and physiological functions of the wrist, potentially causing reduced grip strength, pillar pain, carpal bone instability, scar tissue formation, and perineural fibrosis. It is desirable to decompress the median nerve without surgically transecting the transverse carpal ligament. This paper is to review several approaches we have developed for nonsurgical carpal arch space augmentation (CASA), namely, radio ulnar wrist compression, muscle-ligament interaction, palmar pulling, and collagenolysis of the transverse carpal ligament. Briefly summarized is the research work on the CASA topic about theoretical considerations, in vitro and in situ experiment, computational modeling, and human subject studies with asymptomatic and carpal tunnel syndrome hands.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNon-Surgical Carpal Arch Space Augmentation for Median Nerve Decompression
    typeJournal Paper
    journal volume145
    journal issue8
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4056651
    journal fristpage80801-1
    journal lastpage80801-9
    page9
    treeJournal of Biomechanical Engineering:;2023:;volume( 145 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian