YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Diffusivity of Human Cartilage Endplates in Healthy and Degenerated Intervertebral Disks

    Source: Journal of Biomechanical Engineering:;2023:;volume( 145 ):;issue: 007::page 71006-1
    Author:
    Ren, Pengling
    ,
    Chen, Peng
    ,
    Reeves, Russell A.
    ,
    Buchweitz, Nathan
    ,
    Niu, Haijun
    ,
    Gong, He
    ,
    Mercuri, Jeremy
    ,
    Reitman, Charles A.
    ,
    Yao, Hai
    ,
    Wu, Yongren
    DOI: 10.1115/1.4056871
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The cartilage endplates (CEPs) on the superior and inferior surfaces of the intervertebral disk (IVD), are the primary nutrient transport pathways between the disk and the vertebral body. Passive diffusion is responsible for transporting small nutrient and metabolite molecules through the avascular CEPs. The baseline solute diffusivities in healthy CEPs have been previously studied, however alterations in CEP diffusion associated with IVD degeneration remain unclear. This study aimed to quantitatively compare the solute diffusion in healthy and degenerated human CEPs using a fluorescence recovery after photobleaching (FRAP) approach. Seven healthy CEPs and 22 degenerated CEPs were collected from five fresh-frozen human cadaveric spines and 17 patients undergoing spine fusion surgery, respectively. The sodium fluorescein diffusivities in CEP radial and vertical directions were measured using the FRAP method. The CEP calcification level was evaluated by measuring the average X-ray attenuation. No difference was found in solute diffusivities between radial and axial directions in healthy and degenerated CEPs. Compared to healthy CEPs, the average solute diffusivity was 44% lower in degenerated CEPs (Healthy: 29.07 μm2/s (CI: 23.96–33.62 μm2/s); degenerated: 16.32 μm2/s (CI: 13.84–18.84 μm2/s), p < 0.001). The average solute diffusivity had an inverse relationship with the degree of CEP calcification as determined by the normalized X-ray attenuation values (ß = −22.19, R2 = 0.633; p < 0.001). This study suggests that solute diffusion through the disk and vertebral body interface is significantly hindered by CEP calcification, providing clues to help further understand the mechanism of IVD degeneration.
    • Download: (2.257Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Diffusivity of Human Cartilage Endplates in Healthy and Degenerated Intervertebral Disks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294445
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorRen, Pengling
    contributor authorChen, Peng
    contributor authorReeves, Russell A.
    contributor authorBuchweitz, Nathan
    contributor authorNiu, Haijun
    contributor authorGong, He
    contributor authorMercuri, Jeremy
    contributor authorReitman, Charles A.
    contributor authorYao, Hai
    contributor authorWu, Yongren
    date accessioned2023-11-29T18:53:40Z
    date available2023-11-29T18:53:40Z
    date copyright3/28/2023 12:00:00 AM
    date issued3/28/2023 12:00:00 AM
    date issued2023-03-28
    identifier issn0148-0731
    identifier otherbio_145_07_071006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294445
    description abstractThe cartilage endplates (CEPs) on the superior and inferior surfaces of the intervertebral disk (IVD), are the primary nutrient transport pathways between the disk and the vertebral body. Passive diffusion is responsible for transporting small nutrient and metabolite molecules through the avascular CEPs. The baseline solute diffusivities in healthy CEPs have been previously studied, however alterations in CEP diffusion associated with IVD degeneration remain unclear. This study aimed to quantitatively compare the solute diffusion in healthy and degenerated human CEPs using a fluorescence recovery after photobleaching (FRAP) approach. Seven healthy CEPs and 22 degenerated CEPs were collected from five fresh-frozen human cadaveric spines and 17 patients undergoing spine fusion surgery, respectively. The sodium fluorescein diffusivities in CEP radial and vertical directions were measured using the FRAP method. The CEP calcification level was evaluated by measuring the average X-ray attenuation. No difference was found in solute diffusivities between radial and axial directions in healthy and degenerated CEPs. Compared to healthy CEPs, the average solute diffusivity was 44% lower in degenerated CEPs (Healthy: 29.07 μm2/s (CI: 23.96–33.62 μm2/s); degenerated: 16.32 μm2/s (CI: 13.84–18.84 μm2/s), p < 0.001). The average solute diffusivity had an inverse relationship with the degree of CEP calcification as determined by the normalized X-ray attenuation values (ß = −22.19, R2 = 0.633; p < 0.001). This study suggests that solute diffusion through the disk and vertebral body interface is significantly hindered by CEP calcification, providing clues to help further understand the mechanism of IVD degeneration.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDiffusivity of Human Cartilage Endplates in Healthy and Degenerated Intervertebral Disks
    typeJournal Paper
    journal volume145
    journal issue7
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4056871
    journal fristpage71006-1
    journal lastpage71006-8
    page8
    treeJournal of Biomechanical Engineering:;2023:;volume( 145 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian