YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heat Transfer and Pressure Loss of Turbulent Flow in a Wedge-Shaped Cooling Channel With Different Types of Triply Periodic Minimal Surfaces

    Source: ASME Journal of Heat and Mass Transfer:;2023:;volume( 145 ):;issue: 009::page 93901-1
    Author:
    Yeranee, Kirttayoth
    ,
    Rao, Yu
    DOI: 10.1115/1.4062429
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Additive manufacturing enables highly efficient cooling fabrications such as triply periodic minimal surface (TPMS), which provides excellent heat transfer per unit volume. In a wedge-shaped channel representing trailing edge turbine blade cooling, conventional pin fins are replaced with different TPMS structures due to their topological features to enhance the flow mixing and heat transfer, strengthen the structural integrity, and reduce the manufacturing material. The turbulent flow and heat transfer characteristics of solid- and sheet-based TPMS models, including gyroid, diamond, and Schoen-I-graph and wrapped package (IWP), are numerically investigated. The heat transfer, pressure loss, and thermal performance are compared at Reynolds numbers of 10,000–30,000. Notably, among the studied TPMS structures, the diamond-sheet structure is selected as the optimal model. Compared to the baseline pin fin structure at an equal Reynolds number, it remarkably increases the overall heat transfer by up to 163.2%, the pressure loss by 181.8%, and the thermal performance by up to 77.3%. The numerical results indicate that the gyroid- and diamond-sheet structures effectively organize and interact with the cooling fluid, reducing low-velocity recirculation flow in the tip region of the trailing edge. The flow in the diamond-sheet network is distributed more evenly from the root to the tip region, improving the temperature uniformity throughout the channel. Overall, the diamond-sheet TPMS structure could effectively improve the heat transfer performance, temperature uniformity, and structural integrity in the turbine blades' trailing edge, thereby potentially extending the durability of the turbine blades.
    • Download: (6.844Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heat Transfer and Pressure Loss of Turbulent Flow in a Wedge-Shaped Cooling Channel With Different Types of Triply Periodic Minimal Surfaces

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294388
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorYeranee, Kirttayoth
    contributor authorRao, Yu
    date accessioned2023-11-29T18:47:33Z
    date available2023-11-29T18:47:33Z
    date copyright5/25/2023 12:00:00 AM
    date issued5/25/2023 12:00:00 AM
    date issued2023-05-25
    identifier issn2832-8450
    identifier otherht_145_09_093901.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294388
    description abstractAdditive manufacturing enables highly efficient cooling fabrications such as triply periodic minimal surface (TPMS), which provides excellent heat transfer per unit volume. In a wedge-shaped channel representing trailing edge turbine blade cooling, conventional pin fins are replaced with different TPMS structures due to their topological features to enhance the flow mixing and heat transfer, strengthen the structural integrity, and reduce the manufacturing material. The turbulent flow and heat transfer characteristics of solid- and sheet-based TPMS models, including gyroid, diamond, and Schoen-I-graph and wrapped package (IWP), are numerically investigated. The heat transfer, pressure loss, and thermal performance are compared at Reynolds numbers of 10,000–30,000. Notably, among the studied TPMS structures, the diamond-sheet structure is selected as the optimal model. Compared to the baseline pin fin structure at an equal Reynolds number, it remarkably increases the overall heat transfer by up to 163.2%, the pressure loss by 181.8%, and the thermal performance by up to 77.3%. The numerical results indicate that the gyroid- and diamond-sheet structures effectively organize and interact with the cooling fluid, reducing low-velocity recirculation flow in the tip region of the trailing edge. The flow in the diamond-sheet network is distributed more evenly from the root to the tip region, improving the temperature uniformity throughout the channel. Overall, the diamond-sheet TPMS structure could effectively improve the heat transfer performance, temperature uniformity, and structural integrity in the turbine blades' trailing edge, thereby potentially extending the durability of the turbine blades.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHeat Transfer and Pressure Loss of Turbulent Flow in a Wedge-Shaped Cooling Channel With Different Types of Triply Periodic Minimal Surfaces
    typeJournal Paper
    journal volume145
    journal issue9
    journal titleASME Journal of Heat and Mass Transfer
    identifier doi10.1115/1.4062429
    journal fristpage93901-1
    journal lastpage93901-13
    page13
    treeASME Journal of Heat and Mass Transfer:;2023:;volume( 145 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian