Stretch-Induced Uncrimping of Equatorial Sclera Collagen BundlesSource: Journal of Biomechanical Engineering:;2022:;volume( 145 ):;issue: 005::page 54503-1Author:Jan, Ning-Jiun
,
Lee, Po-Yi
,
Wallace, Jacob
,
Iasella, Michael
,
Gogola, Alexandra
,
Wang, Bingrui
,
Sigal, Ian A.
DOI: 10.1115/1.4056354Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Stretch-induced collagen uncrimping underlies the nonlinear mechanical behavior of the sclera according to what is often called the process of recruitment. We recently reported experimental measurements of sclera collagen crimp and pressure-induced uncrimping. Our studies, however, were cross-sectional, providing statistical descriptions of crimp with no information on the effects of stretch on specific collagen bundles. Data on bundle-specific uncrimping is necessary to better understand the effects of macroscale input on the collagen microscale and tissue failure. Our goal in this project was to measure bundle-specific stretch-induced collagen uncrimping of sclera. Three goat eyes were cryosectioned sagittally (30 μm). Samples of equatorial sclera were isolated, mounted to a custom uni-axial stretcher and imaged with polarized light microscopy at various levels of clamp-to-clamp stretch until failure. At each stretch level, local strain was measured using image tracking techniques. The level of collagen crimping was determined from the bundle waviness, defined as the circular standard deviation of fiber orientation along a bundle. Eye-specific recruitment curves were then computed using eye-specific waviness at maximum stretch before sample failure to define fibers as recruited. Nonlinear mixed effect models were used to determine the associations of waviness to local strain and recruitment to clamp-to-clamp stretch. Waviness decreased exponentially with local strain (p < 0.001), whereas bundle recruitment followed a sigmoidal curve with clamp-to-clamp stretch (p < 0.001). Individual bundle responses to stretch varied substantially, but recruitment curves were similar across sections and eyes. In conclusion, uni-axial stretch caused measurable bundle-specific uncrimping, with the sigmoidal recruitment pattern characteristic of fiber-reinforced soft tissues.
|
Collections
Show full item record
contributor author | Jan, Ning-Jiun | |
contributor author | Lee, Po-Yi | |
contributor author | Wallace, Jacob | |
contributor author | Iasella, Michael | |
contributor author | Gogola, Alexandra | |
contributor author | Wang, Bingrui | |
contributor author | Sigal, Ian A. | |
date accessioned | 2023-11-29T18:46:37Z | |
date available | 2023-11-29T18:46:37Z | |
date copyright | 12/21/2022 12:00:00 AM | |
date issued | 12/21/2022 12:00:00 AM | |
date issued | 2022-12-21 | |
identifier issn | 0148-0731 | |
identifier other | bio_145_05_054503.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4294378 | |
description abstract | Stretch-induced collagen uncrimping underlies the nonlinear mechanical behavior of the sclera according to what is often called the process of recruitment. We recently reported experimental measurements of sclera collagen crimp and pressure-induced uncrimping. Our studies, however, were cross-sectional, providing statistical descriptions of crimp with no information on the effects of stretch on specific collagen bundles. Data on bundle-specific uncrimping is necessary to better understand the effects of macroscale input on the collagen microscale and tissue failure. Our goal in this project was to measure bundle-specific stretch-induced collagen uncrimping of sclera. Three goat eyes were cryosectioned sagittally (30 μm). Samples of equatorial sclera were isolated, mounted to a custom uni-axial stretcher and imaged with polarized light microscopy at various levels of clamp-to-clamp stretch until failure. At each stretch level, local strain was measured using image tracking techniques. The level of collagen crimping was determined from the bundle waviness, defined as the circular standard deviation of fiber orientation along a bundle. Eye-specific recruitment curves were then computed using eye-specific waviness at maximum stretch before sample failure to define fibers as recruited. Nonlinear mixed effect models were used to determine the associations of waviness to local strain and recruitment to clamp-to-clamp stretch. Waviness decreased exponentially with local strain (p < 0.001), whereas bundle recruitment followed a sigmoidal curve with clamp-to-clamp stretch (p < 0.001). Individual bundle responses to stretch varied substantially, but recruitment curves were similar across sections and eyes. In conclusion, uni-axial stretch caused measurable bundle-specific uncrimping, with the sigmoidal recruitment pattern characteristic of fiber-reinforced soft tissues. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Stretch-Induced Uncrimping of Equatorial Sclera Collagen Bundles | |
type | Journal Paper | |
journal volume | 145 | |
journal issue | 5 | |
journal title | Journal of Biomechanical Engineering | |
identifier doi | 10.1115/1.4056354 | |
journal fristpage | 54503-1 | |
journal lastpage | 54503-8 | |
page | 8 | |
tree | Journal of Biomechanical Engineering:;2022:;volume( 145 ):;issue: 005 | |
contenttype | Fulltext |