YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Machine Learning Approach to Model Oxidation of Toluene in a Bubble Column Reactor

    Source: ASME Journal of Heat and Mass Transfer:;2023:;volume( 145 ):;issue: 005::page 52003-1
    Author:
    Tayeb, Raihan
    ,
    Zhang, Yuwen
    DOI: 10.1115/1.4057022
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A machine-learned (ML) subgrid-scale (SGS) modeling technique is introduced for efficient and accurate prediction of reactants and products undergoing parallel competitive reactions as seen in a bubble column. The model relies on data generated from a simple substitute problem with a small number of features. The machine-learned model corrects the errors in concentration and concentration gradients at cell faces arising from using linear interpolation and showed good accuracy for a mesh that barely covers the concentration boundary layer with minimal computational overhead. The present model, thus, offers a significant performance bonus when applied to near spherical, ellipsoid, and dimple-ellipsoidal bubbles.
    • Download: (1.822Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Machine Learning Approach to Model Oxidation of Toluene in a Bubble Column Reactor

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294366
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorTayeb, Raihan
    contributor authorZhang, Yuwen
    date accessioned2023-11-29T18:45:24Z
    date available2023-11-29T18:45:24Z
    date copyright3/20/2023 12:00:00 AM
    date issued3/20/2023 12:00:00 AM
    date issued2023-03-20
    identifier issn2832-8450
    identifier otherht_145_05_052003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294366
    description abstractA machine-learned (ML) subgrid-scale (SGS) modeling technique is introduced for efficient and accurate prediction of reactants and products undergoing parallel competitive reactions as seen in a bubble column. The model relies on data generated from a simple substitute problem with a small number of features. The machine-learned model corrects the errors in concentration and concentration gradients at cell faces arising from using linear interpolation and showed good accuracy for a mesh that barely covers the concentration boundary layer with minimal computational overhead. The present model, thus, offers a significant performance bonus when applied to near spherical, ellipsoid, and dimple-ellipsoidal bubbles.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Machine Learning Approach to Model Oxidation of Toluene in a Bubble Column Reactor
    typeJournal Paper
    journal volume145
    journal issue5
    journal titleASME Journal of Heat and Mass Transfer
    identifier doi10.1115/1.4057022
    journal fristpage52003-1
    journal lastpage52003-8
    page8
    treeASME Journal of Heat and Mass Transfer:;2023:;volume( 145 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian