YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thermal Performance Optimization of the Three-Dimensional Integrated Circuits Employing the Integrated Chip-Size Double-Layer or Multi-Layer Microchannels

    Source: ASME Journal of Heat and Mass Transfer:;2022:;volume( 145 ):;issue: 003::page 32501-1
    Author:
    Lu, Sainan
    ,
    Vafai, Kambiz
    DOI: 10.1115/1.4055245
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The chip-size integrated double-layer microchannels (DLMCs) and multilayer microchannels (MLMCs) are investigated to optimize the thermal performance of three-dimensional integrated circuits (3D ICs). The chip-size integrated DLMCs without a heat spreader and a heat sink reduce the hotspot temperature by almost 15 K for a nominal 3D IC structure. Meanwhile, the size is significantly smaller than the copper heat sinks, and the weight of the chip-size integrated DLMC is reduced by 99.9%. Furthermore, two chip-size integrated DLMCs lower the hotspot temperature by another 6.77 K compared with utilizing just one integrated DLMC on top of the chip structure. The results also show that the MLMCs have a great effect on reducing the hotspot temperature. We have established that the optimal layout is four layers. The hotspot temperature is reduced by 21 K and 102 times lighter in weight compared to nominal 3D IC structure. The proposed structure and results presented in this study pave the way for major innovations in resolving the thermal issues for the 3D ICs.
    • Download: (1.213Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thermal Performance Optimization of the Three-Dimensional Integrated Circuits Employing the Integrated Chip-Size Double-Layer or Multi-Layer Microchannels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294358
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorLu, Sainan
    contributor authorVafai, Kambiz
    date accessioned2023-11-29T18:44:27Z
    date available2023-11-29T18:44:27Z
    date copyright12/9/2022 12:00:00 AM
    date issued12/9/2022 12:00:00 AM
    date issued2022-12-09
    identifier issn2832-8450
    identifier otherht_145_03_032501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294358
    description abstractThe chip-size integrated double-layer microchannels (DLMCs) and multilayer microchannels (MLMCs) are investigated to optimize the thermal performance of three-dimensional integrated circuits (3D ICs). The chip-size integrated DLMCs without a heat spreader and a heat sink reduce the hotspot temperature by almost 15 K for a nominal 3D IC structure. Meanwhile, the size is significantly smaller than the copper heat sinks, and the weight of the chip-size integrated DLMC is reduced by 99.9%. Furthermore, two chip-size integrated DLMCs lower the hotspot temperature by another 6.77 K compared with utilizing just one integrated DLMC on top of the chip structure. The results also show that the MLMCs have a great effect on reducing the hotspot temperature. We have established that the optimal layout is four layers. The hotspot temperature is reduced by 21 K and 102 times lighter in weight compared to nominal 3D IC structure. The proposed structure and results presented in this study pave the way for major innovations in resolving the thermal issues for the 3D ICs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThermal Performance Optimization of the Three-Dimensional Integrated Circuits Employing the Integrated Chip-Size Double-Layer or Multi-Layer Microchannels
    typeJournal Paper
    journal volume145
    journal issue3
    journal titleASME Journal of Heat and Mass Transfer
    identifier doi10.1115/1.4055245
    journal fristpage32501-1
    journal lastpage32501-8
    page8
    treeASME Journal of Heat and Mass Transfer:;2022:;volume( 145 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian