YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Local Heat Transfer Measurements for an Impinging Synthetic Jet

    Source: ASME Journal of Heat and Mass Transfer:;2022:;volume( 145 ):;issue: 001::page 12301-1
    Author:
    Li, Alex
    ,
    Zhu, Rui
    ,
    Simon, Terrence
    DOI: 10.1115/1.4055814
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Research results demonstrate the heat transfer effectiveness of an impinging synthetic jet toward cooling a plane normal to it. The utility of the synthetic jet lies in that the supply of coolant comes from the device itself as an alternating jetting flow that emerges from a plenum followed by a sink flow that returns to that same plenum. Experiments reported herein were conducted with the synthetic jet driven by an oscillating diaphragm powered by a rotating cam to expel fluid from the plenum out of a single hole, then return it through the same hole. The frequency of diaphragm oscillation and the distance from the synthetic jet's orifice to the surface being cooled are varied in the test program to determine their effects on cooling performance. A numerical study agrees with the results given by the experiment and flow visualization utilizing a smoke generator supports the data and numerical results. The local, time-average Nusselt numbers were measured in the experiment using the thermochromic liquid crystal technique and air as coolant. The color display of each test case was recorded with a fisheye camera. In the case of the highest frequency and shortest distance from orifice to cooled plate, a Nusselt number of nearly 40 was achieved within the central region of the cooled plate when the Reynolds number based upon jet maximum velocity and orifice diameter was 7500 and the distance from the orifice to cooled plate was 3.2 orifice diameters.
    • Download: (1.690Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Local Heat Transfer Measurements for an Impinging Synthetic Jet

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294346
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorLi, Alex
    contributor authorZhu, Rui
    contributor authorSimon, Terrence
    date accessioned2023-11-29T18:43:38Z
    date available2023-11-29T18:43:38Z
    date copyright11/10/2022 12:00:00 AM
    date issued11/10/2022 12:00:00 AM
    date issued2022-11-10
    identifier issn2832-8450
    identifier otherht_145_01_012301.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294346
    description abstractResearch results demonstrate the heat transfer effectiveness of an impinging synthetic jet toward cooling a plane normal to it. The utility of the synthetic jet lies in that the supply of coolant comes from the device itself as an alternating jetting flow that emerges from a plenum followed by a sink flow that returns to that same plenum. Experiments reported herein were conducted with the synthetic jet driven by an oscillating diaphragm powered by a rotating cam to expel fluid from the plenum out of a single hole, then return it through the same hole. The frequency of diaphragm oscillation and the distance from the synthetic jet's orifice to the surface being cooled are varied in the test program to determine their effects on cooling performance. A numerical study agrees with the results given by the experiment and flow visualization utilizing a smoke generator supports the data and numerical results. The local, time-average Nusselt numbers were measured in the experiment using the thermochromic liquid crystal technique and air as coolant. The color display of each test case was recorded with a fisheye camera. In the case of the highest frequency and shortest distance from orifice to cooled plate, a Nusselt number of nearly 40 was achieved within the central region of the cooled plate when the Reynolds number based upon jet maximum velocity and orifice diameter was 7500 and the distance from the orifice to cooled plate was 3.2 orifice diameters.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLocal Heat Transfer Measurements for an Impinging Synthetic Jet
    typeJournal Paper
    journal volume145
    journal issue1
    journal titleASME Journal of Heat and Mass Transfer
    identifier doi10.1115/1.4055814
    journal fristpage12301-1
    journal lastpage12301-9
    page9
    treeASME Journal of Heat and Mass Transfer:;2022:;volume( 145 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian