YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Biot Theory-Based Finite Element Modeling of Continuous Ultrasound Propagation Through Microscale Articular Cartilage

    Source: Journal of Biomechanical Engineering:;2022:;volume( 145 ):;issue: 005::page 51002-1
    Author:
    Basu, Sattik
    ,
    Subramanian, Anu
    ,
    Rani, Sarma L.
    DOI: 10.1115/1.4056173
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Low-intensity ultrasound has shown promise in promoting the healing and regeneration of articular cartilage degraded by osteoarthritis. In this study, a two-dimensional finite element method (FEM) model was developed for solving the Biot theory equations governing the propagation of continuous ultrasound through the cartilage. Specifically, we computed the ultrasound-induced dilatations and displacements in the microscale cartilage that is represented as consisting of four zones, namely, the chondrocyte cell and its nucleus, the pericellular matrix (PCM) that forms a layer around the chondrocyte, and the extracellular matrix (ECM). The chondrocyte–PCM complex, referred to as the chondron, is embedded in the ECM. We model multiple cartilage configurations where in the ECM layer contains chondrons along the depth, as well as laterally. The top surface of the ECM layer is subjected to specified amplitude and frequency of continuous ultrasound. The resulting wave propagation is modeled by numerically solving the two-dimensional Biot equations for seven frequencies in the 0.5 MHz–5 MHz range. It is seen that ultrasound is attenuated in the ECM and the attenuation increases monotonically with frequency. In contrast, manyfold augmentation of the ultrasound amplitude is observed inside the cytoplasm and the nucleus of the chondrocyte. Chondrocytes act as a major sink of ultrasound energy, thereby reducing the depthwise propagation of ultrasound fluctuations. Regions of high dilatations and displacements were found at the ECM–PCM interface, PCM–chondrocyte interface, as well as in the cytoplasm and nucleus of the chondrocyte. We observe that the ultrasound field around a chondron interacts with that around a neighboring chondron located at the same depth in the ECM layer. The qualitative and quantitative insights gained from our study may be relevant to designing ultrasound-based therapies for osteoarthritis.
    • Download: (7.407Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Biot Theory-Based Finite Element Modeling of Continuous Ultrasound Propagation Through Microscale Articular Cartilage

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294345
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorBasu, Sattik
    contributor authorSubramanian, Anu
    contributor authorRani, Sarma L.
    date accessioned2023-11-29T18:43:33Z
    date available2023-11-29T18:43:33Z
    date copyright12/9/2022 12:00:00 AM
    date issued12/9/2022 12:00:00 AM
    date issued2022-12-09
    identifier issn0148-0731
    identifier otherbio_145_05_051002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294345
    description abstractLow-intensity ultrasound has shown promise in promoting the healing and regeneration of articular cartilage degraded by osteoarthritis. In this study, a two-dimensional finite element method (FEM) model was developed for solving the Biot theory equations governing the propagation of continuous ultrasound through the cartilage. Specifically, we computed the ultrasound-induced dilatations and displacements in the microscale cartilage that is represented as consisting of four zones, namely, the chondrocyte cell and its nucleus, the pericellular matrix (PCM) that forms a layer around the chondrocyte, and the extracellular matrix (ECM). The chondrocyte–PCM complex, referred to as the chondron, is embedded in the ECM. We model multiple cartilage configurations where in the ECM layer contains chondrons along the depth, as well as laterally. The top surface of the ECM layer is subjected to specified amplitude and frequency of continuous ultrasound. The resulting wave propagation is modeled by numerically solving the two-dimensional Biot equations for seven frequencies in the 0.5 MHz–5 MHz range. It is seen that ultrasound is attenuated in the ECM and the attenuation increases monotonically with frequency. In contrast, manyfold augmentation of the ultrasound amplitude is observed inside the cytoplasm and the nucleus of the chondrocyte. Chondrocytes act as a major sink of ultrasound energy, thereby reducing the depthwise propagation of ultrasound fluctuations. Regions of high dilatations and displacements were found at the ECM–PCM interface, PCM–chondrocyte interface, as well as in the cytoplasm and nucleus of the chondrocyte. We observe that the ultrasound field around a chondron interacts with that around a neighboring chondron located at the same depth in the ECM layer. The qualitative and quantitative insights gained from our study may be relevant to designing ultrasound-based therapies for osteoarthritis.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleBiot Theory-Based Finite Element Modeling of Continuous Ultrasound Propagation Through Microscale Articular Cartilage
    typeJournal Paper
    journal volume145
    journal issue5
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4056173
    journal fristpage51002-1
    journal lastpage51002-16
    page16
    treeJournal of Biomechanical Engineering:;2022:;volume( 145 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian