YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Anatomical Characteristics Contributing to Patellar Dislocations Following MPFL Reconstruction: A Dynamic Simulation Study

    Source: Journal of Biomechanical Engineering:;2022:;volume( 145 ):;issue: 004::page 41003-1
    Author:
    Watts, Jeffrey C.
    ,
    Farrow, Lutul D.
    ,
    Elias, John J.
    DOI: 10.1115/1.4055886
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Pathologic anatomy is a primary factor contributing to redislocation of the patella following reconstruction of the medial patellofemoral ligament (MPFL). A pivot landing was simulated following MPFL reconstruction, with the hypothesis that position of the tibial tuberosity, depth of the trochlear groove, and height of the patella are correlated with lateral patellar maltracking. Thirteen dynamic simulation models represented subjects being treated for recurrent patellar instability. Simplified Hertzian contact governed patellofemoral and tibiofemoral joint reaction forces. Pivot landing was represented with and without an MPFL graft in place. Measurements related to patellar height (Caton-Deschamps index), trochlear groove depth (lateral trochlear inclination), and position of the tibial tuberosity (lateral tibial tuberosity to posterior cruciate attachment distance, or lateral TT-PCL distance) were measured from the models and correlated with patellar lateral shift with the knee extended (5 deg of flexion) and flexed (40 deg). The patella dislocated for all models without an MPFL graft and for two models with a graft represented. With an MPFL graft represented, patellar lateral shift was correlated with Caton-Deschamps index (r2 > 0.35, p < 0.03) and lateral trochlear inclination (r2 ≥ 0.45, p < 0.02) at both 5 deg and 40 deg of flexion. For a simulated pivot landing with an MPFL graft in place, lateral patellar tracking was associated with a high patella (alta) and shallow trochlear groove. The study emphasizes the importance of simulating activities that place the patella at risk of dislocation when evaluating patellar stability.
    • Download: (818.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Anatomical Characteristics Contributing to Patellar Dislocations Following MPFL Reconstruction: A Dynamic Simulation Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294312
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorWatts, Jeffrey C.
    contributor authorFarrow, Lutul D.
    contributor authorElias, John J.
    date accessioned2023-11-29T18:40:37Z
    date available2023-11-29T18:40:37Z
    date copyright12/5/2022 12:00:00 AM
    date issued12/5/2022 12:00:00 AM
    date issued2022-12-05
    identifier issn0148-0731
    identifier otherbio_145_04_041003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294312
    description abstractPathologic anatomy is a primary factor contributing to redislocation of the patella following reconstruction of the medial patellofemoral ligament (MPFL). A pivot landing was simulated following MPFL reconstruction, with the hypothesis that position of the tibial tuberosity, depth of the trochlear groove, and height of the patella are correlated with lateral patellar maltracking. Thirteen dynamic simulation models represented subjects being treated for recurrent patellar instability. Simplified Hertzian contact governed patellofemoral and tibiofemoral joint reaction forces. Pivot landing was represented with and without an MPFL graft in place. Measurements related to patellar height (Caton-Deschamps index), trochlear groove depth (lateral trochlear inclination), and position of the tibial tuberosity (lateral tibial tuberosity to posterior cruciate attachment distance, or lateral TT-PCL distance) were measured from the models and correlated with patellar lateral shift with the knee extended (5 deg of flexion) and flexed (40 deg). The patella dislocated for all models without an MPFL graft and for two models with a graft represented. With an MPFL graft represented, patellar lateral shift was correlated with Caton-Deschamps index (r2 > 0.35, p < 0.03) and lateral trochlear inclination (r2 ≥ 0.45, p < 0.02) at both 5 deg and 40 deg of flexion. For a simulated pivot landing with an MPFL graft in place, lateral patellar tracking was associated with a high patella (alta) and shallow trochlear groove. The study emphasizes the importance of simulating activities that place the patella at risk of dislocation when evaluating patellar stability.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnatomical Characteristics Contributing to Patellar Dislocations Following MPFL Reconstruction: A Dynamic Simulation Study
    typeJournal Paper
    journal volume145
    journal issue4
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4055886
    journal fristpage41003-1
    journal lastpage41003-6
    page6
    treeJournal of Biomechanical Engineering:;2022:;volume( 145 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian