YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Onto Quantifying Unsteady Propulsion Characteristics Using Momentum and Energy Control Volume Assessments

    Source: Journal of Fluids Engineering:;2023:;volume( 145 ):;issue: 006::page 61103-1
    Author:
    Loubimov, George
    ,
    Kinzel, Michael
    DOI: 10.1115/1.4057036
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This effort presents a novel approach to interrogate efficiency for unsteady, undulating propulsion using variable momentum and energy conservation (VMEC) assessments. These integral approaches utilize large amounts of data from computational fluid dynamics (CFD) to address present difficulties associated with separating thrust from drag associated with propelling bodies as well as potentially resolve issues associated with defining a nonzero efficiency for a body in self-propulsion. Such a fundamental issue is addressed through strategic control volume assessments of the momentum and energy conservation equations. In this work, the Method of Manufactured Solutions (MMS) is used to verify the integral-based evaluation approach and better quantify output. The MMS results indicate the method is valid and that one can separate work associated with lift and drag from the energy budget. This separation procedure provides a means to separate propulsive and drag forces. The effort then studies previously validated CFD simulations of heaving and pitching foils to provide insight associated with separating axial forces into their thrust and drag components for highly complex systems. The effort then presents a new efficiency metric that can obtain nonzero efficiencies in self-propulsion. Overall, the results indicate that energy-based assessments provide insight that is a step forward toward isolating loss from propulsive mechanisms and developing proper metrics of efficiency.
    • Download: (2.524Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Onto Quantifying Unsteady Propulsion Characteristics Using Momentum and Energy Control Volume Assessments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294232
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorLoubimov, George
    contributor authorKinzel, Michael
    date accessioned2023-11-29T18:34:33Z
    date available2023-11-29T18:34:33Z
    date copyright3/20/2023 12:00:00 AM
    date issued3/20/2023 12:00:00 AM
    date issued2023-03-20
    identifier issn0098-2202
    identifier otherfe_145_06_061103.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294232
    description abstractThis effort presents a novel approach to interrogate efficiency for unsteady, undulating propulsion using variable momentum and energy conservation (VMEC) assessments. These integral approaches utilize large amounts of data from computational fluid dynamics (CFD) to address present difficulties associated with separating thrust from drag associated with propelling bodies as well as potentially resolve issues associated with defining a nonzero efficiency for a body in self-propulsion. Such a fundamental issue is addressed through strategic control volume assessments of the momentum and energy conservation equations. In this work, the Method of Manufactured Solutions (MMS) is used to verify the integral-based evaluation approach and better quantify output. The MMS results indicate the method is valid and that one can separate work associated with lift and drag from the energy budget. This separation procedure provides a means to separate propulsive and drag forces. The effort then studies previously validated CFD simulations of heaving and pitching foils to provide insight associated with separating axial forces into their thrust and drag components for highly complex systems. The effort then presents a new efficiency metric that can obtain nonzero efficiencies in self-propulsion. Overall, the results indicate that energy-based assessments provide insight that is a step forward toward isolating loss from propulsive mechanisms and developing proper metrics of efficiency.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOnto Quantifying Unsteady Propulsion Characteristics Using Momentum and Energy Control Volume Assessments
    typeJournal Paper
    journal volume145
    journal issue6
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4057036
    journal fristpage61103-1
    journal lastpage61103-12
    page12
    treeJournal of Fluids Engineering:;2023:;volume( 145 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian