YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Behavior of Full-Scale U-Shaped Walls Constructed by Deep Cement Mixing in Consolidating Ground

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2023:;Volume ( 149 ):;issue: 009::page 04023074-1
    Author:
    Anthony H. K. Wong
    ,
    Chris K. W. Cheung
    ,
    Henry K. T. Cheung
    ,
    Charles W. W. Ng
    DOI: 10.1061/JGGEFK.GTENG-11471
    Publisher: ASCE
    Abstract: Deep excavations in soft clays often demand heavy shoring supports. Closely spaced struts are known to impede construction within an excavation, resulting in longer construction time. This paper presents a novel strut-free retaining wall constructed by deep cement mixing (DCM). A new U-shaped DCM system (UDCM) was developed to support a 6.5-m-deep, 16-m-wide excavation in newly reclaimed land. Field measurements involving inclinometers and surface movement markers were interpreted using a fully coupled three-dimensional finite-element model. Results indicated a rotational deformation mechanism in the DCM wall. The mechanism was triggered by stress relief and basal heave. Due to the rigidity of the UDCM, the occurrence of basal heave caused the DCM walls to deflect outward toward the retained side. Such a mechanism is not typical in conventional retaining wall systems in which lateral props are installed after certain depths of excavation. The present UDCM possesses a distinctive characteristic, which is the capability to implement and activate props prior to excavation. It also is unique in that basal heave is used to regulate the rotation of the wall, thereby limiting lateral displacements during an excavation. This study includes a design chart developed for the prediction of lateral displacements with varying treatment geometries.
    • Download: (3.148Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Behavior of Full-Scale U-Shaped Walls Constructed by Deep Cement Mixing in Consolidating Ground

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293584
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorAnthony H. K. Wong
    contributor authorChris K. W. Cheung
    contributor authorHenry K. T. Cheung
    contributor authorCharles W. W. Ng
    date accessioned2023-11-27T23:28:32Z
    date available2023-11-27T23:28:32Z
    date issued6/27/2023 12:00:00 AM
    date issued2023-06-27
    identifier otherJGGEFK.GTENG-11471.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293584
    description abstractDeep excavations in soft clays often demand heavy shoring supports. Closely spaced struts are known to impede construction within an excavation, resulting in longer construction time. This paper presents a novel strut-free retaining wall constructed by deep cement mixing (DCM). A new U-shaped DCM system (UDCM) was developed to support a 6.5-m-deep, 16-m-wide excavation in newly reclaimed land. Field measurements involving inclinometers and surface movement markers were interpreted using a fully coupled three-dimensional finite-element model. Results indicated a rotational deformation mechanism in the DCM wall. The mechanism was triggered by stress relief and basal heave. Due to the rigidity of the UDCM, the occurrence of basal heave caused the DCM walls to deflect outward toward the retained side. Such a mechanism is not typical in conventional retaining wall systems in which lateral props are installed after certain depths of excavation. The present UDCM possesses a distinctive characteristic, which is the capability to implement and activate props prior to excavation. It also is unique in that basal heave is used to regulate the rotation of the wall, thereby limiting lateral displacements during an excavation. This study includes a design chart developed for the prediction of lateral displacements with varying treatment geometries.
    publisherASCE
    titleBehavior of Full-Scale U-Shaped Walls Constructed by Deep Cement Mixing in Consolidating Ground
    typeJournal Article
    journal volume149
    journal issue9
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-11471
    journal fristpage04023074-1
    journal lastpage04023074-14
    page14
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2023:;Volume ( 149 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian