YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hydraulic Conductivity, Microstructure, and Compositional Changes of Sand–Bentonite Backfill in Cutoff Walls Exposed to Organic Acids

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2023:;Volume ( 149 ):;issue: 008::page 04023060-1
    Author:
    Xian-Lei Fu
    ,
    Zhe-Yuan Jiang
    ,
    Krishna R. Reddy
    ,
    Kunlin Ruan
    ,
    Yan-Jun Du
    DOI: 10.1061/JGGEFK.GTENG-11321
    Publisher: ASCE
    Abstract: Leachate, consisting of organic acids such as acetic acid (AA) and oxalic acid (OA), commonly is released into groundwater from municipal solid waste dumps and uncontrolled landfills. Slurry trench cutoff walls commonly are used to contain such contaminated groundwater, thereby protect the surrounding public and the environment. However, no studies have assessed comprehensively the effects of organic acid–laden groundwater exposure on the hydraulic conductivity and microscopic characteristics of sand–bentonite (SB) backfill in the cutoff walls. Several series of free swell, liquid limit, and flexible-wall hydraulic conductivity tests were conducted to quantify the effects of AA and OA exposure on the free swell index of bentonite and hydraulic conductivity and liquid limit of SB backfill. Results showed that the free swell index of bentonite and the liquid limit of SB backfill decreased with increasing concentrations of AA and OA. Exposure to AA yielded a lower free swell index of bentonite and liquid limit of SB backfill than those of OA with the same concentration. Increasing concentrations of AA and OA resulted in an increase in the hydraulic conductivity of SB backfills. Exposure to AA yielded higher hydraulic conductivity of SB backfill than OA with the same concentration. Mechanisms for increased hydraulic conductivity under organic acid exposure were ascertained based on the microstructure and compositional changes quantified by field-emission scanning electron microscopy (FESEM), mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), X-ray fluorescence (XRF), cation exchange capacity (CEC), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR) analyses.
    • Download: (1.687Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hydraulic Conductivity, Microstructure, and Compositional Changes of Sand–Bentonite Backfill in Cutoff Walls Exposed to Organic Acids

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293573
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorXian-Lei Fu
    contributor authorZhe-Yuan Jiang
    contributor authorKrishna R. Reddy
    contributor authorKunlin Ruan
    contributor authorYan-Jun Du
    date accessioned2023-11-27T23:27:32Z
    date available2023-11-27T23:27:32Z
    date issued5/27/2023 12:00:00 AM
    date issued2023-05-27
    identifier otherJGGEFK.GTENG-11321.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293573
    description abstractLeachate, consisting of organic acids such as acetic acid (AA) and oxalic acid (OA), commonly is released into groundwater from municipal solid waste dumps and uncontrolled landfills. Slurry trench cutoff walls commonly are used to contain such contaminated groundwater, thereby protect the surrounding public and the environment. However, no studies have assessed comprehensively the effects of organic acid–laden groundwater exposure on the hydraulic conductivity and microscopic characteristics of sand–bentonite (SB) backfill in the cutoff walls. Several series of free swell, liquid limit, and flexible-wall hydraulic conductivity tests were conducted to quantify the effects of AA and OA exposure on the free swell index of bentonite and hydraulic conductivity and liquid limit of SB backfill. Results showed that the free swell index of bentonite and the liquid limit of SB backfill decreased with increasing concentrations of AA and OA. Exposure to AA yielded a lower free swell index of bentonite and liquid limit of SB backfill than those of OA with the same concentration. Increasing concentrations of AA and OA resulted in an increase in the hydraulic conductivity of SB backfills. Exposure to AA yielded higher hydraulic conductivity of SB backfill than OA with the same concentration. Mechanisms for increased hydraulic conductivity under organic acid exposure were ascertained based on the microstructure and compositional changes quantified by field-emission scanning electron microscopy (FESEM), mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), X-ray fluorescence (XRF), cation exchange capacity (CEC), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR) analyses.
    publisherASCE
    titleHydraulic Conductivity, Microstructure, and Compositional Changes of Sand–Bentonite Backfill in Cutoff Walls Exposed to Organic Acids
    typeJournal Article
    journal volume149
    journal issue8
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-11321
    journal fristpage04023060-1
    journal lastpage04023060-17
    page17
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2023:;Volume ( 149 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian