YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Centrifuge Test Soil-Container Friction on Seismic Sheet-Pile Wall Response in Liquefiable Deposit: Insights from Numerical Simulations

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2023:;Volume ( 149 ):;issue: 009::page 04023068-1
    Author:
    Rui Wang
    ,
    Hexin Liu
    ,
    Bruce L. Kutter
    ,
    Jian-Min Zhang
    DOI: 10.1061/JGGEFK.GTENG-11064
    Publisher: ASCE
    Abstract: As part of the LEAP (Liquefaction Experiments and Analysis Projects), many centrifuge model tests on a sheet pile retaining wall were conducted at six different centrifuge facilities around the world. Each centrifuge facility used containers of different W/H (width of container/height of wall) ratios to model the same plane strain prototype retaining wall. Predictions of the centrifuge tests that neglected wall friction, assumed plane strain conditions, and used the CycLiq constitutive model, exhibit reasonable general agreement with tests in terms of liquefaction response. However, an overprediction of the median response of sheet pile wall displacement was observed. The study presented in this paper was motivated by a concern that friction on the side walls might be biasing results from model containers with different W/H. A numerical simulation parametric study using FLAC3D is presented to illustrate the potential effects of interface friction and container geometry on the LEAP retaining wall test results. The results show that incorporation of appropriate container geometry and soil-container friction can reduce the error between simulated and experimental sheet pile wall displacements. Soil-container friction is also shown to affect the total earth pressure and especially its distribution on the sheet pile wall, causing the actual tests to deviate from the intended plane strain conditions. For the assessed liquefaction related cases, soil-container friction has the additional effect of significantly restricting the local development of excess pore pressure and subsequent soil deformation, further contributing to its influence on the centrifuge tests. The parametric study indicates that an interface friction angle of 17.6° and W/H>1, 2, and 3 reduced horizontal wall displacements by 50%, 20%, and 10% respectively, compared to simulations neglecting wall friction. Use of containers with large W/H is therefore recommended for future centrifuge experiments.
    • Download: (4.825Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Centrifuge Test Soil-Container Friction on Seismic Sheet-Pile Wall Response in Liquefiable Deposit: Insights from Numerical Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293549
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorRui Wang
    contributor authorHexin Liu
    contributor authorBruce L. Kutter
    contributor authorJian-Min Zhang
    date accessioned2023-11-27T23:25:33Z
    date available2023-11-27T23:25:33Z
    date issued6/21/2023 12:00:00 AM
    date issued2023-06-21
    identifier otherJGGEFK.GTENG-11064.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293549
    description abstractAs part of the LEAP (Liquefaction Experiments and Analysis Projects), many centrifuge model tests on a sheet pile retaining wall were conducted at six different centrifuge facilities around the world. Each centrifuge facility used containers of different W/H (width of container/height of wall) ratios to model the same plane strain prototype retaining wall. Predictions of the centrifuge tests that neglected wall friction, assumed plane strain conditions, and used the CycLiq constitutive model, exhibit reasonable general agreement with tests in terms of liquefaction response. However, an overprediction of the median response of sheet pile wall displacement was observed. The study presented in this paper was motivated by a concern that friction on the side walls might be biasing results from model containers with different W/H. A numerical simulation parametric study using FLAC3D is presented to illustrate the potential effects of interface friction and container geometry on the LEAP retaining wall test results. The results show that incorporation of appropriate container geometry and soil-container friction can reduce the error between simulated and experimental sheet pile wall displacements. Soil-container friction is also shown to affect the total earth pressure and especially its distribution on the sheet pile wall, causing the actual tests to deviate from the intended plane strain conditions. For the assessed liquefaction related cases, soil-container friction has the additional effect of significantly restricting the local development of excess pore pressure and subsequent soil deformation, further contributing to its influence on the centrifuge tests. The parametric study indicates that an interface friction angle of 17.6° and W/H>1, 2, and 3 reduced horizontal wall displacements by 50%, 20%, and 10% respectively, compared to simulations neglecting wall friction. Use of containers with large W/H is therefore recommended for future centrifuge experiments.
    publisherASCE
    titleInfluence of Centrifuge Test Soil-Container Friction on Seismic Sheet-Pile Wall Response in Liquefiable Deposit: Insights from Numerical Simulations
    typeJournal Article
    journal volume149
    journal issue9
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-11064
    journal fristpage04023068-1
    journal lastpage04023068-14
    page14
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2023:;Volume ( 149 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian