YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Monotonic and Cyclic Simple Shear Response of Well-Graded Sandy Gravel Soils from Wellington, New Zealand

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2023:;Volume ( 149 ):;issue: 007::page 04023046-1
    Author:
    Jongchan Kim
    ,
    Adda Athanasopoulos-Zekkos
    ,
    Misko Cubrinovski
    DOI: 10.1061/JGGEFK.GTENG-10619
    Publisher: American Society of Civil Engineers
    Abstract: In the 2016 Kaikoura earthquake, liquefaction of gravelly soils from reclaimed fills occurred in CentrePort, Wellington, New Zealand. This study presents constant volume monotonic and cyclic simple shear tests on well-graded gravel with sand collected from CentrePort. A large-scale cyclic simple shear device is utilized to evaluate the monotonic, cyclic, and postcyclic responses of the sandy gravel soils. Specimens prepared at various relative densities were subjected to a vertical effective stress of 100 kPa and then monotonically and cyclically sheared. After the cyclic loading, the postcyclic response was evaluated, including volumetric compression or monotonic shear with or without dissipation of excess pore water pressure. Shear wave velocity was measured before and after the cyclic loading. The results show that the well-graded sandy gravel has a high potential for liquefaction, with higher relative density specimens having higher liquefaction resistance. Postcyclic volumetric strain is primarily correlated with density and maximum shear strain during cyclic loading. Postcyclic reconsolidation causes densification of the liquefied specimens, resulting in higher monotonic shear resistance, while postcyclic monotonic shear without dissipation of excess pore water pressure reveals that substantial shear strain is required to develop the shear resistance. Shear wave velocity was significantly reduced after liquefaction, but recovered to slightly higher than its precyclic shear values after reconsolidation. Compared to other gravelly and sandy soils, the well-graded sandy gravel showed a similar or slightly higher liquefaction resistance than gap-graded and uniform gravels. Moreover, the well-graded sandy gravel had a relatively lower ultimate postcyclic volumetric strain due to a small variation between its maximum and minimum void ratios. The results advance our understanding of the liquefaction resistance and subsequent postcyclic responses of the well-graded sandy gravel soils.
    • Download: (2.060Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Monotonic and Cyclic Simple Shear Response of Well-Graded Sandy Gravel Soils from Wellington, New Zealand

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292687
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorJongchan Kim
    contributor authorAdda Athanasopoulos-Zekkos
    contributor authorMisko Cubrinovski
    date accessioned2023-08-16T19:03:22Z
    date available2023-08-16T19:03:22Z
    date issued2023/07/01
    identifier otherJGGEFK.GTENG-10619.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292687
    description abstractIn the 2016 Kaikoura earthquake, liquefaction of gravelly soils from reclaimed fills occurred in CentrePort, Wellington, New Zealand. This study presents constant volume monotonic and cyclic simple shear tests on well-graded gravel with sand collected from CentrePort. A large-scale cyclic simple shear device is utilized to evaluate the monotonic, cyclic, and postcyclic responses of the sandy gravel soils. Specimens prepared at various relative densities were subjected to a vertical effective stress of 100 kPa and then monotonically and cyclically sheared. After the cyclic loading, the postcyclic response was evaluated, including volumetric compression or monotonic shear with or without dissipation of excess pore water pressure. Shear wave velocity was measured before and after the cyclic loading. The results show that the well-graded sandy gravel has a high potential for liquefaction, with higher relative density specimens having higher liquefaction resistance. Postcyclic volumetric strain is primarily correlated with density and maximum shear strain during cyclic loading. Postcyclic reconsolidation causes densification of the liquefied specimens, resulting in higher monotonic shear resistance, while postcyclic monotonic shear without dissipation of excess pore water pressure reveals that substantial shear strain is required to develop the shear resistance. Shear wave velocity was significantly reduced after liquefaction, but recovered to slightly higher than its precyclic shear values after reconsolidation. Compared to other gravelly and sandy soils, the well-graded sandy gravel showed a similar or slightly higher liquefaction resistance than gap-graded and uniform gravels. Moreover, the well-graded sandy gravel had a relatively lower ultimate postcyclic volumetric strain due to a small variation between its maximum and minimum void ratios. The results advance our understanding of the liquefaction resistance and subsequent postcyclic responses of the well-graded sandy gravel soils.
    publisherAmerican Society of Civil Engineers
    titleMonotonic and Cyclic Simple Shear Response of Well-Graded Sandy Gravel Soils from Wellington, New Zealand
    typeJournal Article
    journal volume149
    journal issue7
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-10619
    journal fristpage04023046-1
    journal lastpage04023046-13
    page13
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2023:;Volume ( 149 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian