YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Physiological Axial Tibial Rotation of the Knee During a Weightbearing Flexion

    Source: Journal of Biomechanical Engineering:;2022:;volume( 145 ):;issue: 005::page 54502-1
    Author:
    Li, Guoan
    ,
    Zhou, Chaochao
    ,
    Yu, Jia
    ,
    Li, Sophia
    ,
    Foster, Timothy
    ,
    Bedair, Hany
    DOI: 10.1115/1.4056431
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Axial tibial rotation is a characteristic motion of the knee, but how it occurs with knee flexion is controversial. We investigated the mechanisms of tibial rotations by analyzing in vivo tibiofemoral articulations. Twenty knees of 20 living human subjects were investigated during a weightbearing flexion from full extension to maximal flexion using a dual fluoroscopic imaging system. Tibiofemoral articular contact motions on medial and lateral femoral condyles and tibial surfaces were measured at flexion intervals of 15 deg from 0 deg to 120 deg. Axial tibial rotations due to the femoral and tibial articular motions were compared. Articular contact distances were longer on femoral condyles than on tibial surfaces at all flexion intervals (p < 0.05). The articular distance on medial femoral condyle is longer than on lateral side during flexion up to 60 deg. The internal tibial rotation was 6.8 ± 4.5 deg (Mean ± SD) at the flexion interval of 0–15 deg, where 6.1 ± 2.6 deg was due to articulations on femoral condyles and 0.7 ± 5.1 deg due to articulations on tibial surfaces (p < 0.05). The axial tibial rotations due to articulations on femoral condyles are significantly larger than those on tibial surfaces until 60 deg of flexion (p < 0.05). Minimal additional axial tibial rotations were observed beyond 60 deg of flexion. The axial tibial rotations were mainly attributed to uneven articulations on medial and lateral femoral condyles. These data can provide new insights into the understanding of mechanisms of axial tibial rotations and serve as baseline knowledge for improvement of knee surgeries.
    • Download: (1.376Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Physiological Axial Tibial Rotation of the Knee During a Weightbearing Flexion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292411
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorLi, Guoan
    contributor authorZhou, Chaochao
    contributor authorYu, Jia
    contributor authorLi, Sophia
    contributor authorFoster, Timothy
    contributor authorBedair, Hany
    date accessioned2023-08-16T18:44:20Z
    date available2023-08-16T18:44:20Z
    date copyright12/21/2022 12:00:00 AM
    date issued2022
    identifier issn0148-0731
    identifier otherbio_145_05_054502.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292411
    description abstractAxial tibial rotation is a characteristic motion of the knee, but how it occurs with knee flexion is controversial. We investigated the mechanisms of tibial rotations by analyzing in vivo tibiofemoral articulations. Twenty knees of 20 living human subjects were investigated during a weightbearing flexion from full extension to maximal flexion using a dual fluoroscopic imaging system. Tibiofemoral articular contact motions on medial and lateral femoral condyles and tibial surfaces were measured at flexion intervals of 15 deg from 0 deg to 120 deg. Axial tibial rotations due to the femoral and tibial articular motions were compared. Articular contact distances were longer on femoral condyles than on tibial surfaces at all flexion intervals (p < 0.05). The articular distance on medial femoral condyle is longer than on lateral side during flexion up to 60 deg. The internal tibial rotation was 6.8 ± 4.5 deg (Mean ± SD) at the flexion interval of 0–15 deg, where 6.1 ± 2.6 deg was due to articulations on femoral condyles and 0.7 ± 5.1 deg due to articulations on tibial surfaces (p < 0.05). The axial tibial rotations due to articulations on femoral condyles are significantly larger than those on tibial surfaces until 60 deg of flexion (p < 0.05). Minimal additional axial tibial rotations were observed beyond 60 deg of flexion. The axial tibial rotations were mainly attributed to uneven articulations on medial and lateral femoral condyles. These data can provide new insights into the understanding of mechanisms of axial tibial rotations and serve as baseline knowledge for improvement of knee surgeries.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePhysiological Axial Tibial Rotation of the Knee During a Weightbearing Flexion
    typeJournal Paper
    journal volume145
    journal issue5
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4056431
    journal fristpage54502-1
    journal lastpage54502-4
    page4
    treeJournal of Biomechanical Engineering:;2022:;volume( 145 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian