YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Tolerancing for an Apple Pie: A Fundamental Theory of Tolerances

    Source: Journal of Mechanical Design:;2023:;volume( 145 ):;issue: 006::page 61401-1
    Author:
    Roland Campbell, Joshua
    ,
    Hazelrigg, George A.
    DOI: 10.1115/1.4057040
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Tolerancing began with the notion of limits imposed on the dimensions of realized parts both to maintain functional geometric dimensionality and to enable cost-effective part fabrication and inspection. Increasingly, however, component fabrication depends on more than part geometry as many parts are fabricated as a result of a “recipe” rather than dimensional instructions for material addition or removal. Referred to as process tolerancing, this is the case, for example, with IC chips. In the case of tolerance optimization, a typical objective is cost minimization while achieving required functionality or “quality.” This article takes a different look at tolerances, suggesting that rather than ensuring merely that parts achieve a desired functionality at minimum cost, a typical underlying goal of the product design is to make money, more is better, and tolerances comprise additional design variables amenable to optimization in a decision theoretic framework. We further recognize that tolerances introduce additional product attributes that relate to product characteristics such as consistency, quality, reliability, and durability. These important attributes complicate the computation of the expected utility of candidate designs, requiring additional computational steps for their determination. The resulting theory of tolerancing illuminates the assumptions and limitations inherent to Taguchi’s loss function. We illustrate the theory using the example of tolerancing for an apple pie, which conveniently demands consideration of tolerances on both quantities and processes, and the interaction among these tolerances.
    • Download: (496.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Tolerancing for an Apple Pie: A Fundamental Theory of Tolerances

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292394
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorRoland Campbell, Joshua
    contributor authorHazelrigg, George A.
    date accessioned2023-08-16T18:43:43Z
    date available2023-08-16T18:43:43Z
    date copyright3/29/2023 12:00:00 AM
    date issued2023
    identifier issn1050-0472
    identifier othermd_145_6_061401.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292394
    description abstractTolerancing began with the notion of limits imposed on the dimensions of realized parts both to maintain functional geometric dimensionality and to enable cost-effective part fabrication and inspection. Increasingly, however, component fabrication depends on more than part geometry as many parts are fabricated as a result of a “recipe” rather than dimensional instructions for material addition or removal. Referred to as process tolerancing, this is the case, for example, with IC chips. In the case of tolerance optimization, a typical objective is cost minimization while achieving required functionality or “quality.” This article takes a different look at tolerances, suggesting that rather than ensuring merely that parts achieve a desired functionality at minimum cost, a typical underlying goal of the product design is to make money, more is better, and tolerances comprise additional design variables amenable to optimization in a decision theoretic framework. We further recognize that tolerances introduce additional product attributes that relate to product characteristics such as consistency, quality, reliability, and durability. These important attributes complicate the computation of the expected utility of candidate designs, requiring additional computational steps for their determination. The resulting theory of tolerancing illuminates the assumptions and limitations inherent to Taguchi’s loss function. We illustrate the theory using the example of tolerancing for an apple pie, which conveniently demands consideration of tolerances on both quantities and processes, and the interaction among these tolerances.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTolerancing for an Apple Pie: A Fundamental Theory of Tolerances
    typeJournal Paper
    journal volume145
    journal issue6
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4057040
    journal fristpage61401-1
    journal lastpage61401-8
    page8
    treeJournal of Mechanical Design:;2023:;volume( 145 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian