YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nanoengineered Laser Shock Processing Via Pulse Shaping for Nanostructuring in Metals: Multiscale Simulations and Experiments

    Source: Journal of Manufacturing Science and Engineering:;2023:;volume( 145 ):;issue: 008::page 81006-1
    Author:
    Xiang, Sen
    ,
    Liu, Xingtao
    ,
    An, Licong
    ,
    Qu, Haozheng
    ,
    Cheng, Gary J.
    DOI: 10.1115/1.4062234
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Modulating the heating and cooling during plastic deformation has been critical to control the microstructure and phase change in metals. During laser shock peening under optimal elevated temperatures, high-density dislocations and nanoprecipitates can be generated to greatly enhance material strength and fatigue life in metals. Currently, heating control during laser shock is limited to steady-state heat transfer, such as hot plate, irradiative heating, or far-infrared heating, which is slow for practical treatment and does not provide the transient conditions for generating nanostructures during shock processing. In this paper, we propose a general methodology to modulate the heating and cooling during laser shock processing via temporal pulse shaping, namely dual pulse laser shock peening (DP-LSP), which combines both ultrafast-heating and laser shock peening in one operation to generate desired microstructure and mechanical property. By modulating the duration of pulses as well as the spacing between pulses, different processing temperatures can be achieved. To test the feasibility of this novel process, DP-LSP has been applied to an Al matrix nanocomposite. Single pulse laser shock peening was able to remelt large second phase precipitates due to fast cooling, resulting in smaller grains (500 nm), while using DP-LSP with the appropriate pulse duration, dynamic precipitation effects can generate nanosized (30 nm) intermetallic phase Al3Ti with high density. By generation of grain size refinement, high-density nanoscale precipitates, and dislocations after DP-LSP, the yield strength increases by 18% and 102% compared with single pulse processing, and original sample respectively. Finite element method modeling was used to simulate the temperature profile in the alloy during the temporal modulated dual laser pulsing. A phase-field model and multiscale dislocation dynamics were applied to study dislocation dynamics and nanoprecipitation generation during DP-LSP, and their interactions at elevated temperatures. The work provides the basis for controlling microstructure in DP-LSP to enhance mechanical properties in metals.
    • Download: (1.108Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nanoengineered Laser Shock Processing Via Pulse Shaping for Nanostructuring in Metals: Multiscale Simulations and Experiments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292307
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorXiang, Sen
    contributor authorLiu, Xingtao
    contributor authorAn, Licong
    contributor authorQu, Haozheng
    contributor authorCheng, Gary J.
    date accessioned2023-08-16T18:40:40Z
    date available2023-08-16T18:40:40Z
    date copyright4/12/2023 12:00:00 AM
    date issued2023
    identifier issn1087-1357
    identifier othermanu_145_8_081006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292307
    description abstractModulating the heating and cooling during plastic deformation has been critical to control the microstructure and phase change in metals. During laser shock peening under optimal elevated temperatures, high-density dislocations and nanoprecipitates can be generated to greatly enhance material strength and fatigue life in metals. Currently, heating control during laser shock is limited to steady-state heat transfer, such as hot plate, irradiative heating, or far-infrared heating, which is slow for practical treatment and does not provide the transient conditions for generating nanostructures during shock processing. In this paper, we propose a general methodology to modulate the heating and cooling during laser shock processing via temporal pulse shaping, namely dual pulse laser shock peening (DP-LSP), which combines both ultrafast-heating and laser shock peening in one operation to generate desired microstructure and mechanical property. By modulating the duration of pulses as well as the spacing between pulses, different processing temperatures can be achieved. To test the feasibility of this novel process, DP-LSP has been applied to an Al matrix nanocomposite. Single pulse laser shock peening was able to remelt large second phase precipitates due to fast cooling, resulting in smaller grains (500 nm), while using DP-LSP with the appropriate pulse duration, dynamic precipitation effects can generate nanosized (30 nm) intermetallic phase Al3Ti with high density. By generation of grain size refinement, high-density nanoscale precipitates, and dislocations after DP-LSP, the yield strength increases by 18% and 102% compared with single pulse processing, and original sample respectively. Finite element method modeling was used to simulate the temperature profile in the alloy during the temporal modulated dual laser pulsing. A phase-field model and multiscale dislocation dynamics were applied to study dislocation dynamics and nanoprecipitation generation during DP-LSP, and their interactions at elevated temperatures. The work provides the basis for controlling microstructure in DP-LSP to enhance mechanical properties in metals.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNanoengineered Laser Shock Processing Via Pulse Shaping for Nanostructuring in Metals: Multiscale Simulations and Experiments
    typeJournal Paper
    journal volume145
    journal issue8
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4062234
    journal fristpage81006-1
    journal lastpage81006-8
    page8
    treeJournal of Manufacturing Science and Engineering:;2023:;volume( 145 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian