YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Novel Reconfigurable 3-DOF Parallel Kinematics Machine

    Source: Journal of Mechanisms and Robotics:;2023:;volume( 016 ):;issue: 002::page 21005-1
    Author:
    Rosyid, Abdur
    ,
    Stefanini, Cesare
    ,
    El-Khasawneh, Bashar
    DOI: 10.1115/1.4056683
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper proposes a novel, reconfigurable parallel kinematics machine with three degrees of freedom that can be used for various three-axis manipulation tasks, including machining. By locking some joints, the proposed parallel kinematics machine (PKM) can be transformed into four topologies with eight configurations to attain certain kinematic properties while keeping the number of its degrees of freedom unchanged. Either the proximal or intermediate prismatic joints of the reconfigurable PKM can be actuated. Some of the configurations are orthogonal configurations having a large rectangular cuboid workspace, and some other configurations are non-orthogonal configurations which provide the capability to perform a machining task to a large workpiece in various positions with respect to the machine. Accordingly, the proposed machine can be transformed from an orthogonal machine to a non-orthogonal machine with the advantages of each. The mobility of the various topologies of the reconfigurable PKM is rigorously analyzed using the screw theory. The workspace is analyzed using a graphical approach and verified by a computational approach. The pose kinematics shows that the various topologies have unified kinematics. The differential kinematics shows that the singularities in the various configurations occur at the workspace boundary. Similarly, the stiffness analysis shows that the low-stiffness postures occur around the workspace boundary. Accordingly, a used workspace far from the workspace boundary easily avoids the singularities and the low stiffness.
    • Download: (1.226Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Novel Reconfigurable 3-DOF Parallel Kinematics Machine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292215
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorRosyid, Abdur
    contributor authorStefanini, Cesare
    contributor authorEl-Khasawneh, Bashar
    date accessioned2023-08-16T18:36:48Z
    date available2023-08-16T18:36:48Z
    date copyright3/3/2023 12:00:00 AM
    date issued2023
    identifier issn1942-4302
    identifier otherjmr_16_2_021005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292215
    description abstractThis paper proposes a novel, reconfigurable parallel kinematics machine with three degrees of freedom that can be used for various three-axis manipulation tasks, including machining. By locking some joints, the proposed parallel kinematics machine (PKM) can be transformed into four topologies with eight configurations to attain certain kinematic properties while keeping the number of its degrees of freedom unchanged. Either the proximal or intermediate prismatic joints of the reconfigurable PKM can be actuated. Some of the configurations are orthogonal configurations having a large rectangular cuboid workspace, and some other configurations are non-orthogonal configurations which provide the capability to perform a machining task to a large workpiece in various positions with respect to the machine. Accordingly, the proposed machine can be transformed from an orthogonal machine to a non-orthogonal machine with the advantages of each. The mobility of the various topologies of the reconfigurable PKM is rigorously analyzed using the screw theory. The workspace is analyzed using a graphical approach and verified by a computational approach. The pose kinematics shows that the various topologies have unified kinematics. The differential kinematics shows that the singularities in the various configurations occur at the workspace boundary. Similarly, the stiffness analysis shows that the low-stiffness postures occur around the workspace boundary. Accordingly, a used workspace far from the workspace boundary easily avoids the singularities and the low stiffness.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Novel Reconfigurable 3-DOF Parallel Kinematics Machine
    typeJournal Paper
    journal volume16
    journal issue2
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4056683
    journal fristpage21005-1
    journal lastpage21005-14
    page14
    treeJournal of Mechanisms and Robotics:;2023:;volume( 016 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian