YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Journal of Engineering for Sustainable Buildings and Cities
    • View Item
    •   YE&T Library
    • ASME
    • ASME Journal of Engineering for Sustainable Buildings and Cities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analyzing Harmony and Discord Among Optimal Building Controllers Responding to Energy, Cost, and Carbon Reduction Objectives

    Source: ASME Journal of Engineering for Sustainable Buildings and Cities:;2023:;volume( 004 ):;issue: 001::page 11002-1
    Author:
    Li, Lily X.
    ,
    Pavlak, Gregory S.
    DOI: 10.1115/1.4056962
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Optimization and control of building thermal energy storage holds great potential for unlocking demand-side flexibility, an asset that is being given much attention in current grid reforms responding to the climate crisis. As greater information regarding grid operations is becoming available, grid-interactive building controls inherently have become a multi-objective problem. Typical multi-objective optimization frameworks often introduce greater complexity and computational burden and are less favorable for achieving widespread adoption. With the overall goal of easing deployment of advanced building controls and aiding the building-to-grid integration, this work aims to evaluate the trade-offs and degrees of sub-optimality introduced by implementing single-objective controllers only. We formulate and apply a detailed single-objective, model predictive control (MPC) framework to individually optimize building thermal storage assets of two types of commercial buildings, informed by future grid scenarios, around energy, economic, environmental, and peak demand objectives. For each day, we compare the building’s performance in every category as if it had been controlled by four separate single-objective model predictive controllers. By comparing the individual controllers for each day, we reveal the level of harmony or discord that exists between these simple single-objective problems. In essence, we quantify the potential loss that would occur in three of the objectives if the optimal control problem were to optimally respond to only one of the grid signals. Results show that on most days, the carbon and energy controllers retained most of the savings in energy, cost, and carbon. Trade-offs were observed between the peak demand controller and the other objectives, and during extreme energy pricing events. These observations are further discussed in terms of their implications for the design of grid-interactive building incentive signals and utility tariffs.
    • Download: (1.885Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analyzing Harmony and Discord Among Optimal Building Controllers Responding to Energy, Cost, and Carbon Reduction Objectives

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292197
    Collections
    • ASME Journal of Engineering for Sustainable Buildings and Cities

    Show full item record

    contributor authorLi, Lily X.
    contributor authorPavlak, Gregory S.
    date accessioned2023-08-16T18:36:12Z
    date available2023-08-16T18:36:12Z
    date copyright3/21/2023 12:00:00 AM
    date issued2023
    identifier issn2642-6641
    identifier otherjesbc_4_1_011002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292197
    description abstractOptimization and control of building thermal energy storage holds great potential for unlocking demand-side flexibility, an asset that is being given much attention in current grid reforms responding to the climate crisis. As greater information regarding grid operations is becoming available, grid-interactive building controls inherently have become a multi-objective problem. Typical multi-objective optimization frameworks often introduce greater complexity and computational burden and are less favorable for achieving widespread adoption. With the overall goal of easing deployment of advanced building controls and aiding the building-to-grid integration, this work aims to evaluate the trade-offs and degrees of sub-optimality introduced by implementing single-objective controllers only. We formulate and apply a detailed single-objective, model predictive control (MPC) framework to individually optimize building thermal storage assets of two types of commercial buildings, informed by future grid scenarios, around energy, economic, environmental, and peak demand objectives. For each day, we compare the building’s performance in every category as if it had been controlled by four separate single-objective model predictive controllers. By comparing the individual controllers for each day, we reveal the level of harmony or discord that exists between these simple single-objective problems. In essence, we quantify the potential loss that would occur in three of the objectives if the optimal control problem were to optimally respond to only one of the grid signals. Results show that on most days, the carbon and energy controllers retained most of the savings in energy, cost, and carbon. Trade-offs were observed between the peak demand controller and the other objectives, and during extreme energy pricing events. These observations are further discussed in terms of their implications for the design of grid-interactive building incentive signals and utility tariffs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnalyzing Harmony and Discord Among Optimal Building Controllers Responding to Energy, Cost, and Carbon Reduction Objectives
    typeJournal Paper
    journal volume4
    journal issue1
    journal titleASME Journal of Engineering for Sustainable Buildings and Cities
    identifier doi10.1115/1.4056962
    journal fristpage11002-1
    journal lastpage11002-15
    page15
    treeASME Journal of Engineering for Sustainable Buildings and Cities:;2023:;volume( 004 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian