YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Hybrid Response Surface Methodology and Multi-Criteria Decision Making Model to Investigate the Performance and Emission Characteristics of a Diesel Engine Fueled With Phenolic Antioxidant Additive and Biodiesel Blends

    Source: Journal of Energy Resources Technology:;2023:;volume( 145 ):;issue: 009::page 92302-1
    Author:
    Kumar, Vijay
    ,
    Choudhary, Akhilesh Kumar
    DOI: 10.1115/1.4056939
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Overconsumption of fossil fuels has accelerated global warming and raised environmental air pollution levels. Recent studies have looked into the potential use of alternative, environmentally friendly fuels for diesel engines in response to the rising need for oil. Biodiesel is a renewable alternative fuel that is environmentally friendly. The significant increase in nitrogen oxide (NOx) emissions is the most notable disadvantage of biodiesel. This study examined the effect of antioxidant-treated Jatropha biodiesel on the performance and exhaust emission parameters of a VCR diesel engine. For this study, diesel, Jatropha biodiesel (B30), and phenolic antioxidant additive diphenylamine at 100 ppm are added by weight to the B30 blend named as B30 + DPA fuel blend was used. A hybrid RSM was used in conjunction with CCD and MCDM approaches such as AHP and COPRAS techniques to produce a sustainable model to derive the most accurate optimum models for output responses. From experimental findings, the antioxidant significantly reduced NOx emission. The inclusion of DPA in the tested blend lowered the average NOx emissions and brake-specific fuel consumption (BSFC) by 7.4% and 7.8%, respectively as compared with B30. Also, the brake mean effective pressure (BMEP) of B30 + DPA is 5.01% and 0.38% higher than diesel and B30, maximum cylinder pressure (CPMax) is 0.9% higher than B30, but 3.4% lower than diesel. The optimal setting of engine input parameters is recorded at compression ratio of 15, 7.5% EGR-HOT, and 12 kg load, for optimum BP, BMEP, BSFC, CPMax, and NOx emissions. Therefore, the B30 + DPA blend is suitable for enhancing diesel engine performance and minimizing exhaust emissions.
    • Download: (1.168Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Hybrid Response Surface Methodology and Multi-Criteria Decision Making Model to Investigate the Performance and Emission Characteristics of a Diesel Engine Fueled With Phenolic Antioxidant Additive and Biodiesel Blends

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292192
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorKumar, Vijay
    contributor authorChoudhary, Akhilesh Kumar
    date accessioned2023-08-16T18:35:58Z
    date available2023-08-16T18:35:58Z
    date copyright4/6/2023 12:00:00 AM
    date issued2023
    identifier issn0195-0738
    identifier otherjert_145_9_092302.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292192
    description abstractOverconsumption of fossil fuels has accelerated global warming and raised environmental air pollution levels. Recent studies have looked into the potential use of alternative, environmentally friendly fuels for diesel engines in response to the rising need for oil. Biodiesel is a renewable alternative fuel that is environmentally friendly. The significant increase in nitrogen oxide (NOx) emissions is the most notable disadvantage of biodiesel. This study examined the effect of antioxidant-treated Jatropha biodiesel on the performance and exhaust emission parameters of a VCR diesel engine. For this study, diesel, Jatropha biodiesel (B30), and phenolic antioxidant additive diphenylamine at 100 ppm are added by weight to the B30 blend named as B30 + DPA fuel blend was used. A hybrid RSM was used in conjunction with CCD and MCDM approaches such as AHP and COPRAS techniques to produce a sustainable model to derive the most accurate optimum models for output responses. From experimental findings, the antioxidant significantly reduced NOx emission. The inclusion of DPA in the tested blend lowered the average NOx emissions and brake-specific fuel consumption (BSFC) by 7.4% and 7.8%, respectively as compared with B30. Also, the brake mean effective pressure (BMEP) of B30 + DPA is 5.01% and 0.38% higher than diesel and B30, maximum cylinder pressure (CPMax) is 0.9% higher than B30, but 3.4% lower than diesel. The optimal setting of engine input parameters is recorded at compression ratio of 15, 7.5% EGR-HOT, and 12 kg load, for optimum BP, BMEP, BSFC, CPMax, and NOx emissions. Therefore, the B30 + DPA blend is suitable for enhancing diesel engine performance and minimizing exhaust emissions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Hybrid Response Surface Methodology and Multi-Criteria Decision Making Model to Investigate the Performance and Emission Characteristics of a Diesel Engine Fueled With Phenolic Antioxidant Additive and Biodiesel Blends
    typeJournal Paper
    journal volume145
    journal issue9
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4056939
    journal fristpage92302-1
    journal lastpage92302-14
    page14
    treeJournal of Energy Resources Technology:;2023:;volume( 145 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian