YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Numerical Analysis of Radio Frequency Heating of Coal With Different Ranks

    Source: Journal of Energy Resources Technology:;2023:;volume( 145 ):;issue: 009::page 91801-1
    Author:
    Liu, Rui
    ,
    Dong, Xuelin
    ,
    Gao, Deli
    DOI: 10.1115/1.4057033
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Radio frequency (RF) heating is a novel thermal stimulation method in developing coalbed methane (CBM). Various research has been conducted on the effect of electromagnetic (EM) heating on the physical properties of coal. However, few studies considered the working conditions of underground coal seam heating. This paper calculates the coal seam temperature distribution based on the coupling between electromagnetic wave propagation and heat transfer in a vertical well to study the influence of coal seam metamorphism and thermoelectric characteristics on temperature distribution. The reservoir thermophysical parameters related to temperature are considered in the heat transfer and wave equations, respectively. Numerical simulations reveal the influence of coal ranks and thermo-electrical properties on heating efficacy. Results indicate that the temperature in the vicinity of the RF heater is relatively high, and the whole heated zone forms an elliptical shape. Low-metamorphism coal, such as lignite, is more functional for RF heating and has a broad heating range, leading to a uniform diffusion coefficient enhancement and good thermal homogeneity. Higher thermal conductivity, lower specific heat capacity, and water saturation can expand the heating area and reduce the temperature near the borehole, benefiting the maintenance of wellbore integrity. The coal seam relative permittivity has little effect on the reservoir temperature when its value is between 2.4 and 6.4.
    • Download: (1.162Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Numerical Analysis of Radio Frequency Heating of Coal With Different Ranks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292190
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorLiu, Rui
    contributor authorDong, Xuelin
    contributor authorGao, Deli
    date accessioned2023-08-16T18:35:53Z
    date available2023-08-16T18:35:53Z
    date copyright3/16/2023 12:00:00 AM
    date issued2023
    identifier issn0195-0738
    identifier otherjert_145_9_091801.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292190
    description abstractRadio frequency (RF) heating is a novel thermal stimulation method in developing coalbed methane (CBM). Various research has been conducted on the effect of electromagnetic (EM) heating on the physical properties of coal. However, few studies considered the working conditions of underground coal seam heating. This paper calculates the coal seam temperature distribution based on the coupling between electromagnetic wave propagation and heat transfer in a vertical well to study the influence of coal seam metamorphism and thermoelectric characteristics on temperature distribution. The reservoir thermophysical parameters related to temperature are considered in the heat transfer and wave equations, respectively. Numerical simulations reveal the influence of coal ranks and thermo-electrical properties on heating efficacy. Results indicate that the temperature in the vicinity of the RF heater is relatively high, and the whole heated zone forms an elliptical shape. Low-metamorphism coal, such as lignite, is more functional for RF heating and has a broad heating range, leading to a uniform diffusion coefficient enhancement and good thermal homogeneity. Higher thermal conductivity, lower specific heat capacity, and water saturation can expand the heating area and reduce the temperature near the borehole, benefiting the maintenance of wellbore integrity. The coal seam relative permittivity has little effect on the reservoir temperature when its value is between 2.4 and 6.4.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Numerical Analysis of Radio Frequency Heating of Coal With Different Ranks
    typeJournal Paper
    journal volume145
    journal issue9
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4057033
    journal fristpage91801-1
    journal lastpage91801-10
    page10
    treeJournal of Energy Resources Technology:;2023:;volume( 145 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian