YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Technoeconomic Analysis of a Small-Scale Downdraft Gasification-Based Cogeneration Power Plant Using Green Wastes

    Source: Journal of Energy Resources Technology:;2023:;volume( 145 ):;issue: 008::page 81401-1
    Author:
    Duque-Uribe, David
    ,
    Montiel-Bohórquez, Néstor D.
    ,
    Pérez, Juan F.
    DOI: 10.1115/1.4056529
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this work, the technoeconomic assessment of a small-scale gasification-based cogeneration plant (25–50 kWe) fed with green wastes (fallen leaves, spent coffee grounds, and paperboard) is presented. The cogeneration power plant is modeled using Thermoflex software under thermochemical equilibrium and steady-state assumptions. Subsequently, the performance of the cogeneration plant is numerically analyzed as a function of the feedstock moisture content (6–30%), air–waste equivalence ratio (0.20–0.55), and the system load (6.25–25 kWe). The results show that the best energy performance of the cogeneration plant is achieved with a feedstock moisture of 6.05%, an equivalence ratio of 0.358, and a load of 25 kWe. At this best performance mode, the electric generation and cogeneration efficiencies are 19.33% and 49.71%, respectively, with a specific biomass consumption of 1.19 kg/kWh. Two scenarios are established for the economic assessment. The baseline scenario considers a 25-kWe cogeneration plant, while, in the second one, the generation capacity of the system was assumed to be doubled (50 kWe). The financial results show that the power generation has an energy levelized cost of 11.7 ¢$/kWh and 8.4 ¢$/kWh for 25 kWe and 50 kWe, respectively. Nevertheless, none of the proposed scenarios were found to be economically feasible based on the negative net present value obtained. Therefore, further energy laws and regulations are required seeking to support the small-scale auto-generation units based on biomass gasification.
    • Download: (845.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Technoeconomic Analysis of a Small-Scale Downdraft Gasification-Based Cogeneration Power Plant Using Green Wastes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292181
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorDuque-Uribe, David
    contributor authorMontiel-Bohórquez, Néstor D.
    contributor authorPérez, Juan F.
    date accessioned2023-08-16T18:35:40Z
    date available2023-08-16T18:35:40Z
    date copyright3/13/2023 12:00:00 AM
    date issued2023
    identifier issn0195-0738
    identifier otherjert_145_8_081401.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292181
    description abstractIn this work, the technoeconomic assessment of a small-scale gasification-based cogeneration plant (25–50 kWe) fed with green wastes (fallen leaves, spent coffee grounds, and paperboard) is presented. The cogeneration power plant is modeled using Thermoflex software under thermochemical equilibrium and steady-state assumptions. Subsequently, the performance of the cogeneration plant is numerically analyzed as a function of the feedstock moisture content (6–30%), air–waste equivalence ratio (0.20–0.55), and the system load (6.25–25 kWe). The results show that the best energy performance of the cogeneration plant is achieved with a feedstock moisture of 6.05%, an equivalence ratio of 0.358, and a load of 25 kWe. At this best performance mode, the electric generation and cogeneration efficiencies are 19.33% and 49.71%, respectively, with a specific biomass consumption of 1.19 kg/kWh. Two scenarios are established for the economic assessment. The baseline scenario considers a 25-kWe cogeneration plant, while, in the second one, the generation capacity of the system was assumed to be doubled (50 kWe). The financial results show that the power generation has an energy levelized cost of 11.7 ¢$/kWh and 8.4 ¢$/kWh for 25 kWe and 50 kWe, respectively. Nevertheless, none of the proposed scenarios were found to be economically feasible based on the negative net present value obtained. Therefore, further energy laws and regulations are required seeking to support the small-scale auto-generation units based on biomass gasification.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTechnoeconomic Analysis of a Small-Scale Downdraft Gasification-Based Cogeneration Power Plant Using Green Wastes
    typeJournal Paper
    journal volume145
    journal issue8
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4056529
    journal fristpage81401-1
    journal lastpage81401-13
    page13
    treeJournal of Energy Resources Technology:;2023:;volume( 145 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian