YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Vibration and Pressure on the Air–BioCNG Mixture Inside the Manifolds of Dual-Fuel Diesel Engines

    Source: Journal of Energy Resources Technology:;2023:;volume( 145 ):;issue: 007::page 72301-1
    Author:
    Chandekar, Akash Chandrabhan
    ,
    Debnath, Biplab Kumar
    DOI: 10.1115/1.4056842
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The vibration generated by diesel engines may influence air and gaseous fuel mixing in a dual-fuel mode. This study is performed on the manifolds of single- and twin-cylinder engines in a diesel–bioCNG dual-fuel mode. It examines the effect of the engine vibration and variable manifold pressure on the flow behavior of the air–bioCNG mixture. The objective is to observe the flow inside the manifolds and mixture quality at the outlet. The mentioned work has found little attention till date. The computational comparison of the flow characteristics inside the intake manifold of the single-cylinder engine is done for an F-shape manifold of the twin-cylinder engine during suction stroke. The experiments are conducted to record both the engines’ vibration signature and cycle data. For this, the same operating parameters are maintained: compression ratio of 16.5, engine speed of 1500 rpm, engine load range (0 Nm–34 Nm), and 80% bioCNG substitution. It employs the boundary conditions such as the vibration amplitude along three axes, variable manifold pressure, and the mass flowrates of air and bioCNG. The parameters to analyze the mixture flow are pressure, velocity, turbulence, helicity, and mass fraction of CH4. The mixture at the manifold outlet of the single-cylinder engine improved to an average uniformity index of 0.9924, indicating better homogeneity. Further, the manifold of the twin-cylinder engine attained the indexes of 0.1484 and 0.2401 for its two cylinders, showing nonhomogeneity.
    • Download: (1.481Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Vibration and Pressure on the Air–BioCNG Mixture Inside the Manifolds of Dual-Fuel Diesel Engines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292169
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorChandekar, Akash Chandrabhan
    contributor authorDebnath, Biplab Kumar
    date accessioned2023-08-16T18:35:03Z
    date available2023-08-16T18:35:03Z
    date copyright2/28/2023 12:00:00 AM
    date issued2023
    identifier issn0195-0738
    identifier otherjert_145_7_072301.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292169
    description abstractThe vibration generated by diesel engines may influence air and gaseous fuel mixing in a dual-fuel mode. This study is performed on the manifolds of single- and twin-cylinder engines in a diesel–bioCNG dual-fuel mode. It examines the effect of the engine vibration and variable manifold pressure on the flow behavior of the air–bioCNG mixture. The objective is to observe the flow inside the manifolds and mixture quality at the outlet. The mentioned work has found little attention till date. The computational comparison of the flow characteristics inside the intake manifold of the single-cylinder engine is done for an F-shape manifold of the twin-cylinder engine during suction stroke. The experiments are conducted to record both the engines’ vibration signature and cycle data. For this, the same operating parameters are maintained: compression ratio of 16.5, engine speed of 1500 rpm, engine load range (0 Nm–34 Nm), and 80% bioCNG substitution. It employs the boundary conditions such as the vibration amplitude along three axes, variable manifold pressure, and the mass flowrates of air and bioCNG. The parameters to analyze the mixture flow are pressure, velocity, turbulence, helicity, and mass fraction of CH4. The mixture at the manifold outlet of the single-cylinder engine improved to an average uniformity index of 0.9924, indicating better homogeneity. Further, the manifold of the twin-cylinder engine attained the indexes of 0.1484 and 0.2401 for its two cylinders, showing nonhomogeneity.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Vibration and Pressure on the Air–BioCNG Mixture Inside the Manifolds of Dual-Fuel Diesel Engines
    typeJournal Paper
    journal volume145
    journal issue7
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4056842
    journal fristpage72301-1
    journal lastpage72301-12
    page12
    treeJournal of Energy Resources Technology:;2023:;volume( 145 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian