YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Energy and Exergy Analyses of Multiple Biodiesel Blended Diesel Engine

    Source: Journal of Energy Resources Technology:;2022:;volume( 145 ):;issue: 004::page 42301-1
    Author:
    Sayyed, Siraj
    ,
    Das, Randip Kumar
    ,
    Kulkarni, Kishor
    DOI: 10.1115/1.4054850
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper deals with the experimental investigation of direct injection compression ignition (DICI) engine runs with multiple biodiesels–diesel blended and neat diesel fuels along with the energy-exergy analysis to evaluate quantitative and qualitative data for determining energy and exergy efficiencies, losses, and exergy destruction. Second-generation biodiesels are utilized to conduct experiments on engine with constant speed and full throttle condition at a compression ratio of 17.5:1. Energy analysis is based on experimental data, and exergy analysis is performed with the help of derived formula using chemical and molecular structures. Variation in the performance, combustion, and emission parameters for B0, B10, and B20 blends reveals that BTE, AFR, η(mech.), η(vol.), CP, and CO decrease with the increase in BSEC, EGT, MGT, RPR, NHR, CO2, HC, and NOx. Energy-exergy analysis shows that the combustion and exergetic efficiencies are maximum for the B20 blend (+87.73%) and (+52.04%) at 2.5 kW and 3.3 kW BPs. Exergy destructed is observed to be three-fifth of total available exergy. Half of the heat supplied is carried away by cooling water while one-third of heat is converted into brake power, and the remaining heat is lost in exhaust gases and unaccounted losses.
    • Download: (2.007Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Energy and Exergy Analyses of Multiple Biodiesel Blended Diesel Engine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292126
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorSayyed, Siraj
    contributor authorDas, Randip Kumar
    contributor authorKulkarni, Kishor
    date accessioned2023-08-16T18:33:18Z
    date available2023-08-16T18:33:18Z
    date copyright10/19/2022 12:00:00 AM
    date issued2022
    identifier issn0195-0738
    identifier otherjert_145_4_042301.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292126
    description abstractThis paper deals with the experimental investigation of direct injection compression ignition (DICI) engine runs with multiple biodiesels–diesel blended and neat diesel fuels along with the energy-exergy analysis to evaluate quantitative and qualitative data for determining energy and exergy efficiencies, losses, and exergy destruction. Second-generation biodiesels are utilized to conduct experiments on engine with constant speed and full throttle condition at a compression ratio of 17.5:1. Energy analysis is based on experimental data, and exergy analysis is performed with the help of derived formula using chemical and molecular structures. Variation in the performance, combustion, and emission parameters for B0, B10, and B20 blends reveals that BTE, AFR, η(mech.), η(vol.), CP, and CO decrease with the increase in BSEC, EGT, MGT, RPR, NHR, CO2, HC, and NOx. Energy-exergy analysis shows that the combustion and exergetic efficiencies are maximum for the B20 blend (+87.73%) and (+52.04%) at 2.5 kW and 3.3 kW BPs. Exergy destructed is observed to be three-fifth of total available exergy. Half of the heat supplied is carried away by cooling water while one-third of heat is converted into brake power, and the remaining heat is lost in exhaust gases and unaccounted losses.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEnergy and Exergy Analyses of Multiple Biodiesel Blended Diesel Engine
    typeJournal Paper
    journal volume145
    journal issue4
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4054850
    journal fristpage42301-1
    journal lastpage42301-14
    page14
    treeJournal of Energy Resources Technology:;2022:;volume( 145 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian