YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Role of Oxidizer Mixture Composition on Stabilizing Stratified Oxy-Flames in Dual Lean Premixed Combustors for Gas Turbines

    Source: Journal of Energy Resources Technology:;2022:;volume( 145 ):;issue: 003::page 31701-1
    Author:
    Nemitallah, Medhat A.
    ,
    Hamzat, Abdulhammed K.
    ,
    Ismaila, Kehinde G.
    DOI: 10.1115/1.4055226
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study investigates the effects of oxidizer composition on stability and combustion and emission characteristics of stratified premixed CH4-O2-CO2 flames in a dual annular counter-rotating swirl (DACRS) burner for wider near blowout operability of gas turbines. Flame stratification was achieved by dividing the incoming reactants into primary and secondary streams of different oxygen fractions (OF). The effects of primary and secondary OFs (primary OFs: 60%, 50%, and 30%; and secondary OFs: 60%, 50%, 40%, and 30%) were numerically investigated at fixed inlet throat velocities and equivalence ratios (φ) of the primary and the secondary streams of 6 m/s and 2 m/s and of 0.9 and 0.55, respectively. The probability distribution function has been used to average the thermochemical properties and reaction rates. Two distinct flame shapes, the v-shaped and the conical-shaped were identified as a function of the oxidizer composition. V-shaped flames with enhanced flow mixing, strong inner and outer recirculation zones (IRZ and ORZ), and intensive interactions between both streams at lower Damkohler number (Da) were recorded for OFs within 30–50%. This indicates the ability of the DACRS burner to extend the lean blowout limit by holding stratified stable flames of lower OFs. The flame shape turned into a conical shape at OFs of 60–60% for both streams, the IRZ disappeared, intensive reaction rates of higher Da attained, and the flashback mechanism approached. Weak flame/flow interactions were observed at OFs higher than 50% with excessive combustion temperature near the burner tip. CH4 disappeared very close to the burner tip, indicating fast reactions.
    • Download: (1.235Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Role of Oxidizer Mixture Composition on Stabilizing Stratified Oxy-Flames in Dual Lean Premixed Combustors for Gas Turbines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292103
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorNemitallah, Medhat A.
    contributor authorHamzat, Abdulhammed K.
    contributor authorIsmaila, Kehinde G.
    date accessioned2023-08-16T18:32:33Z
    date available2023-08-16T18:32:33Z
    date copyright9/1/2022 12:00:00 AM
    date issued2022
    identifier issn0195-0738
    identifier otherjert_145_3_031701.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292103
    description abstractThis study investigates the effects of oxidizer composition on stability and combustion and emission characteristics of stratified premixed CH4-O2-CO2 flames in a dual annular counter-rotating swirl (DACRS) burner for wider near blowout operability of gas turbines. Flame stratification was achieved by dividing the incoming reactants into primary and secondary streams of different oxygen fractions (OF). The effects of primary and secondary OFs (primary OFs: 60%, 50%, and 30%; and secondary OFs: 60%, 50%, 40%, and 30%) were numerically investigated at fixed inlet throat velocities and equivalence ratios (φ) of the primary and the secondary streams of 6 m/s and 2 m/s and of 0.9 and 0.55, respectively. The probability distribution function has been used to average the thermochemical properties and reaction rates. Two distinct flame shapes, the v-shaped and the conical-shaped were identified as a function of the oxidizer composition. V-shaped flames with enhanced flow mixing, strong inner and outer recirculation zones (IRZ and ORZ), and intensive interactions between both streams at lower Damkohler number (Da) were recorded for OFs within 30–50%. This indicates the ability of the DACRS burner to extend the lean blowout limit by holding stratified stable flames of lower OFs. The flame shape turned into a conical shape at OFs of 60–60% for both streams, the IRZ disappeared, intensive reaction rates of higher Da attained, and the flashback mechanism approached. Weak flame/flow interactions were observed at OFs higher than 50% with excessive combustion temperature near the burner tip. CH4 disappeared very close to the burner tip, indicating fast reactions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRole of Oxidizer Mixture Composition on Stabilizing Stratified Oxy-Flames in Dual Lean Premixed Combustors for Gas Turbines
    typeJournal Paper
    journal volume145
    journal issue3
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4055226
    journal fristpage31701-1
    journal lastpage31701-12
    page12
    treeJournal of Energy Resources Technology:;2022:;volume( 145 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian