YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Comparative Analysis on Thermal Stability of Delithiated Nickel-Rich LiNi0.8Co0.15Al0.05O2 and LiNi0.8Co0.1Mn0.1O2 in Pouch Cells

    Source: Journal of Electrochemical Energy Conversion and Storage:;2023:;volume( 021 ):;issue: 001::page 11006-1
    Author:
    Zhang, Fukui
    ,
    Wu, Changjun
    ,
    Li, Kou
    ,
    Deng, Tao
    DOI: 10.1115/1.4062318
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: As two typical nickel-rich layered oxide cathodes, LiNi0.8Co0.15Al0.05O2 (NCA) and LiNi0.8Co0.1Mn0.1O2 (NCM811) are widely applicated in commercial high-energy batteries for electric vehicles. However, a comprehensive assessment of their thermal characteristics in a full cell is currently lacking. In this article, we conducted a monomer level thermal runaway test on NCA|SiC pouch cell and NCM811|SiC pouch cell through the accelerated rate calorimetry (ARC) test. The results showed that the {T1, T2, T3} of NCA|SiC pouch cell and NCM811|SiC pouch cell are {113.8 °C, 230.4 °C, 801.4 °C} and {91.3 °C, 202.1 °C, 745 °C}, respectively. Then the thermal stability of NCA and NCM811 was tested by differential scanning calorimeter coupled with thermal gravimetric analysis, and mass spectrometry (DSC-TG-MS). The results showed that the phase transition temperature of NCA is higher than that of NCM811. However, when NCA and NCM811 were mixed with anode electrode materials or electrolyte, NCA produced significantly more heat than NCM811. By confirming the thermal properties of NCA|SiC pouch cell and NCM811|SiC pouch cell, a deeper understanding of battery thermal runaway was achieved, which is helpful for the design of high-safety lithium-ion batteries in the future.
    • Download: (698.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Comparative Analysis on Thermal Stability of Delithiated Nickel-Rich LiNi0.8Co0.15Al0.05O2 and LiNi0.8Co0.1Mn0.1O2 in Pouch Cells

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292076
    Collections
    • Journal of Electrochemical Energy Conversion and Storage

    Show full item record

    contributor authorZhang, Fukui
    contributor authorWu, Changjun
    contributor authorLi, Kou
    contributor authorDeng, Tao
    date accessioned2023-08-16T18:31:05Z
    date available2023-08-16T18:31:05Z
    date copyright5/2/2023 12:00:00 AM
    date issued2023
    identifier issn2381-6872
    identifier otherjeecs_21_1_011006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292076
    description abstractAs two typical nickel-rich layered oxide cathodes, LiNi0.8Co0.15Al0.05O2 (NCA) and LiNi0.8Co0.1Mn0.1O2 (NCM811) are widely applicated in commercial high-energy batteries for electric vehicles. However, a comprehensive assessment of their thermal characteristics in a full cell is currently lacking. In this article, we conducted a monomer level thermal runaway test on NCA|SiC pouch cell and NCM811|SiC pouch cell through the accelerated rate calorimetry (ARC) test. The results showed that the {T1, T2, T3} of NCA|SiC pouch cell and NCM811|SiC pouch cell are {113.8 °C, 230.4 °C, 801.4 °C} and {91.3 °C, 202.1 °C, 745 °C}, respectively. Then the thermal stability of NCA and NCM811 was tested by differential scanning calorimeter coupled with thermal gravimetric analysis, and mass spectrometry (DSC-TG-MS). The results showed that the phase transition temperature of NCA is higher than that of NCM811. However, when NCA and NCM811 were mixed with anode electrode materials or electrolyte, NCA produced significantly more heat than NCM811. By confirming the thermal properties of NCA|SiC pouch cell and NCM811|SiC pouch cell, a deeper understanding of battery thermal runaway was achieved, which is helpful for the design of high-safety lithium-ion batteries in the future.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Comparative Analysis on Thermal Stability of Delithiated Nickel-Rich LiNi0.8Co0.15Al0.05O2 and LiNi0.8Co0.1Mn0.1O2 in Pouch Cells
    typeJournal Paper
    journal volume21
    journal issue1
    journal titleJournal of Electrochemical Energy Conversion and Storage
    identifier doi10.1115/1.4062318
    journal fristpage11006-1
    journal lastpage11006-6
    page6
    treeJournal of Electrochemical Energy Conversion and Storage:;2023:;volume( 021 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian