YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Geodesic Convolutional Neural Network Characterization of Macro-Porous Latent Thermal Energy Storage

    Source: ASME Journal of Heat and Mass Transfer:;2023:;volume( 145 ):;issue: 005::page 52902-1
    Author:
    Mallya, Nithin
    ,
    Baqué, Pierre
    ,
    Yvernay, Pierre
    ,
    Pozzetti, Andrea
    ,
    Fua, Pascal
    ,
    Haussener, Sophia
    DOI: 10.1115/1.4056663
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: High-temperature latent heat thermal energy storage with metallic alloy phase change materials (PCMs) utilize the high latent heat and high thermal conductivity to gain a competitive edge over existing sensible and latent storage technologies. Novel macroporous latent heat storage units can be used to enhance the limiting convective heat transfer between the heat transfer fluid and the PCM to attain higher power density while maintaining high energy density. 3D monolithic percolating macroporous latent heat storage unit cells with random and ordered substructure topology were created using synthetic tomography data. Full 3D thermal computational fluid dynamics (CFD) simulations with phase change modeling was performed on 1000+ such structures using effective heat capacity method and temperature- and phase-dependent thermophysical properties. Design parameters, including transient thermal and flow characteristics, phase change time and pressure drop, were extracted as output scalars from the simulated charging process. As such structures cannot be parametrized meaningfully, a mesh-based Geodesic Convolutional Neural Network (GCNN) designed to perform direct convolutions on the surface and volume meshes of the macroporous structures was trained to predict the output scalars along with pressure, temperature, velocity distributions in the volume, and surface distributions of heat flux and shear stress. An Artificial Neural Network (ANN) using macroscopic properties—porosity, surface area, and two-point surface-void correlation functions—of the structures as inputs was used as a standard regressor for comparison. The GCNN exhibited high prediction accuracy of the scalars, outperforming the ANN and linear/exponential fits, owing to the disentangling property of GCNNs where predictions were improved by the introduction of correlated surface and volume fields. The trained GCNN behaves as a coupled CFD-heat transfer emulator predicting the volumetric distribution of temperature, pressure, velocity fields, and heat flux and shear stress distributions at the PCM–HTF interface. This deep learning based methodology offers a unique, generalized, and computationally competitive way to quickly predict phase change behavior of high power density macroporous structures in a few seconds and has the potential to optimize the percolating macroporous unit cells to application specific requirements.
    • Download: (3.770Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Geodesic Convolutional Neural Network Characterization of Macro-Porous Latent Thermal Energy Storage

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291969
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorMallya, Nithin
    contributor authorBaqué, Pierre
    contributor authorYvernay, Pierre
    contributor authorPozzetti, Andrea
    contributor authorFua, Pascal
    contributor authorHaussener, Sophia
    date accessioned2023-08-16T18:26:42Z
    date available2023-08-16T18:26:42Z
    date copyright2/3/2023 12:00:00 AM
    date issued2023
    identifier issn2832-8450
    identifier otherht_145_05_052902.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291969
    description abstractHigh-temperature latent heat thermal energy storage with metallic alloy phase change materials (PCMs) utilize the high latent heat and high thermal conductivity to gain a competitive edge over existing sensible and latent storage technologies. Novel macroporous latent heat storage units can be used to enhance the limiting convective heat transfer between the heat transfer fluid and the PCM to attain higher power density while maintaining high energy density. 3D monolithic percolating macroporous latent heat storage unit cells with random and ordered substructure topology were created using synthetic tomography data. Full 3D thermal computational fluid dynamics (CFD) simulations with phase change modeling was performed on 1000+ such structures using effective heat capacity method and temperature- and phase-dependent thermophysical properties. Design parameters, including transient thermal and flow characteristics, phase change time and pressure drop, were extracted as output scalars from the simulated charging process. As such structures cannot be parametrized meaningfully, a mesh-based Geodesic Convolutional Neural Network (GCNN) designed to perform direct convolutions on the surface and volume meshes of the macroporous structures was trained to predict the output scalars along with pressure, temperature, velocity distributions in the volume, and surface distributions of heat flux and shear stress. An Artificial Neural Network (ANN) using macroscopic properties—porosity, surface area, and two-point surface-void correlation functions—of the structures as inputs was used as a standard regressor for comparison. The GCNN exhibited high prediction accuracy of the scalars, outperforming the ANN and linear/exponential fits, owing to the disentangling property of GCNNs where predictions were improved by the introduction of correlated surface and volume fields. The trained GCNN behaves as a coupled CFD-heat transfer emulator predicting the volumetric distribution of temperature, pressure, velocity fields, and heat flux and shear stress distributions at the PCM–HTF interface. This deep learning based methodology offers a unique, generalized, and computationally competitive way to quickly predict phase change behavior of high power density macroporous structures in a few seconds and has the potential to optimize the percolating macroporous unit cells to application specific requirements.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleGeodesic Convolutional Neural Network Characterization of Macro-Porous Latent Thermal Energy Storage
    typeJournal Paper
    journal volume145
    journal issue5
    journal titleASME Journal of Heat and Mass Transfer
    identifier doi10.1115/1.4056663
    journal fristpage52902-1
    journal lastpage52902-13
    page13
    treeASME Journal of Heat and Mass Transfer:;2023:;volume( 145 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian