YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Open Journal of Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASME Open Journal of Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multi-Objective Optimization and Tradespace Analysis of a Mechanical Clock Movement Design

    Source: ASME Open Journal of Engineering:;2023:;volume( 002 )::page 21029-1
    Author:
    Xu, Yifan
    ,
    Turner, Cameron
    ,
    Wagner, John
    DOI: 10.1115/1.4062410
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Pendulum clocks were the prevalent time keeping standard for centuries to regulate commerce and public activities. These mechanical movements were the most accurate timekeepers globally until replaced by electric clocks. Although mainly used for decorative purposes today, the pendulum clock's working principles and mechanical behavior can serve to demonstrate fundamental science and engineering concepts. The tradeoff between a clock's quality factor, pendulum properties, and period can best be explored with multiple objective optimization and tradespace analysis methods. In this project, a Multi-Objective Genetic Algorithm (MOGA-II) and a Multi-Objective Simulated Annealing (MOSA) optimization approaches are applied to evaluate a Graham escapement street clock for pendulum mass and time accuracy with a range of the period. These clock designs vary the pendulum length, pendulum bob radius, and bob thickness. Horological concepts are used to calculate the overall performance and general utility. The numerical results show a 0.7% increase in the quality factor, and a 0.56% reduction in the mass, while maintaining the designed period by modifying the clock parameters. More importantly, these changes can provide material cost savings in a mass production scenario. Overall, the study highlights the tradeoff designer engineers have considered for decades which can now be visualized using computer tools for greater insight.
    • Download: (778.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multi-Objective Optimization and Tradespace Analysis of a Mechanical Clock Movement Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291967
    Collections
    • ASME Open Journal of Engineering

    Show full item record

    contributor authorXu, Yifan
    contributor authorTurner, Cameron
    contributor authorWagner, John
    date accessioned2023-08-16T18:26:39Z
    date available2023-08-16T18:26:39Z
    date copyright5/12/2023 12:00:00 AM
    date issued2023
    identifier issn2770-3495
    identifier otheraoje_2_021029.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291967
    description abstractPendulum clocks were the prevalent time keeping standard for centuries to regulate commerce and public activities. These mechanical movements were the most accurate timekeepers globally until replaced by electric clocks. Although mainly used for decorative purposes today, the pendulum clock's working principles and mechanical behavior can serve to demonstrate fundamental science and engineering concepts. The tradeoff between a clock's quality factor, pendulum properties, and period can best be explored with multiple objective optimization and tradespace analysis methods. In this project, a Multi-Objective Genetic Algorithm (MOGA-II) and a Multi-Objective Simulated Annealing (MOSA) optimization approaches are applied to evaluate a Graham escapement street clock for pendulum mass and time accuracy with a range of the period. These clock designs vary the pendulum length, pendulum bob radius, and bob thickness. Horological concepts are used to calculate the overall performance and general utility. The numerical results show a 0.7% increase in the quality factor, and a 0.56% reduction in the mass, while maintaining the designed period by modifying the clock parameters. More importantly, these changes can provide material cost savings in a mass production scenario. Overall, the study highlights the tradeoff designer engineers have considered for decades which can now be visualized using computer tools for greater insight.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMulti-Objective Optimization and Tradespace Analysis of a Mechanical Clock Movement Design
    typeJournal Paper
    journal volume2
    journal titleASME Open Journal of Engineering
    identifier doi10.1115/1.4062410
    journal fristpage21029-1
    journal lastpage21029-9
    page9
    treeASME Open Journal of Engineering:;2023:;volume( 002 )
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian