YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiple Phase Change Material-Based Heat Sink for Cooling of Electronics: A Combined Experimental and Numerical Study

    Source: ASME Journal of Heat and Mass Transfer:;2023:;volume( 145 ):;issue: 004::page 43001-1
    Author:
    Marri, Girish Kumar
    ,
    Srikanth, R.
    ,
    Balaji, C.
    DOI: 10.1115/1.4056543
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper reports an investigation of the thermal performance of an energy storage heat sink incorporated with multiple phase change materials (PCMs). A six-cavity cylindrical heat sink heated at the base is chosen for the investigations with Docosane, n-Eicosane, and Tetracosane as candidate PCMs. The phase transition of PCMs has been visualized with a digital camera and three-dimensional numerical simulations. The results show that the latent heat exploitation process of PCMs in a heat sink with multiple PCMs is different from the single PCM heat sink, where the PCMs in all cavities melt distinctly rather at a time, thereby opening up windows for obtaining deeper insights that can lead to better performing heat sinks. A trained artificial neural network (ANN) with 78 representative heat sink configurations based on the arrangement of the PCMs in the cavities as input and charging and discharging times as output is used to swiftly drive the optimization engine. Finally, multi-objective optimization is performed using the artificial bee colony algorithm with simultaneous consideration of two conflicting objectives (i.e., maximizing charging cycle time and minimizing discharging cycle time) of the heat sink. From the optimization study, best performing nondominated Pareto optimal heat sink configurations are obtained and validated with the in-house experimental results. From the investigations, it is found that the heat sink configurations with multiple PCMs perform on par with the single PCMs in the charging process and show a superiority of up to 24% in discharging process over a heat sink with single PCMs in terms of time to reach set point temperature.
    • Download: (3.241Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiple Phase Change Material-Based Heat Sink for Cooling of Electronics: A Combined Experimental and Numerical Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291959
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorMarri, Girish Kumar
    contributor authorSrikanth, R.
    contributor authorBalaji, C.
    date accessioned2023-08-16T18:26:15Z
    date available2023-08-16T18:26:15Z
    date copyright1/12/2023 12:00:00 AM
    date issued2023
    identifier issn2832-8450
    identifier otherht_145_04_043001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291959
    description abstractThis paper reports an investigation of the thermal performance of an energy storage heat sink incorporated with multiple phase change materials (PCMs). A six-cavity cylindrical heat sink heated at the base is chosen for the investigations with Docosane, n-Eicosane, and Tetracosane as candidate PCMs. The phase transition of PCMs has been visualized with a digital camera and three-dimensional numerical simulations. The results show that the latent heat exploitation process of PCMs in a heat sink with multiple PCMs is different from the single PCM heat sink, where the PCMs in all cavities melt distinctly rather at a time, thereby opening up windows for obtaining deeper insights that can lead to better performing heat sinks. A trained artificial neural network (ANN) with 78 representative heat sink configurations based on the arrangement of the PCMs in the cavities as input and charging and discharging times as output is used to swiftly drive the optimization engine. Finally, multi-objective optimization is performed using the artificial bee colony algorithm with simultaneous consideration of two conflicting objectives (i.e., maximizing charging cycle time and minimizing discharging cycle time) of the heat sink. From the optimization study, best performing nondominated Pareto optimal heat sink configurations are obtained and validated with the in-house experimental results. From the investigations, it is found that the heat sink configurations with multiple PCMs perform on par with the single PCMs in the charging process and show a superiority of up to 24% in discharging process over a heat sink with single PCMs in terms of time to reach set point temperature.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMultiple Phase Change Material-Based Heat Sink for Cooling of Electronics: A Combined Experimental and Numerical Study
    typeJournal Paper
    journal volume145
    journal issue4
    journal titleASME Journal of Heat and Mass Transfer
    identifier doi10.1115/1.4056543
    journal fristpage43001-1
    journal lastpage43001-13
    page13
    treeASME Journal of Heat and Mass Transfer:;2023:;volume( 145 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian