YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Drying of a Fully Saturated Porous Medium With Excess Water Layers: A Numerical Study

    Source: ASME Journal of Heat and Mass Transfer:;2022:;volume( 145 ):;issue: 002::page 22701-1
    Author:
    Asar, Munevver Elif
    ,
    Yagoobi, Jamal
    DOI: 10.1115/1.4056068
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Drying of moist porous media can be very energy inefficient. For example, in the pulp and paper industry, paper drying consumes more than two-thirds of the total energy used in paper machines. Novel drying technologies can decrease the energy used for drying and lessen the manufacturing processes' carbon footprint. Developing next-generation drying technologies to dry moist porous media may require an understanding of removing moisture from a fully saturated porous material with excess water. This paper provides a fundamental understanding of heat and mass transfer in a fully saturated porous medium with excess water. This is relevant, for example, in drying tissue as well as pulp or paper for the purpose of thermal insulation where pressing is preferred to be avoided to overcome the reduction in the sheet thickness. For this purpose, a theoretical drying model is developed where the porous medium corresponds to paper and is assumed to be sandwiched between two excess-water layers (bottom and top). The conjugate model consists of energy and mass conservation equations for each layer. The model is validated with corresponding experimental data. In the model, the thickness of each water layer is calculated as a function of drying time based on local temperature and total moisture content. The numerical model is transient and one-dimensional in space (i.e., in the thickness direction). This paper demonstrates the governing equations, boundary conditions, and results when the saturated porous medium with water layers is heated from one side. Moisture and temperature profiles are estimated in the thickness direction of the porous medium as it dries.
    • Download: (1.863Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Drying of a Fully Saturated Porous Medium With Excess Water Layers: A Numerical Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291930
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorAsar, Munevver Elif
    contributor authorYagoobi, Jamal
    date accessioned2023-08-16T18:25:11Z
    date available2023-08-16T18:25:11Z
    date copyright11/22/2022 12:00:00 AM
    date issued2022
    identifier issn2832-8450
    identifier otherht_145_02_022701.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291930
    description abstractDrying of moist porous media can be very energy inefficient. For example, in the pulp and paper industry, paper drying consumes more than two-thirds of the total energy used in paper machines. Novel drying technologies can decrease the energy used for drying and lessen the manufacturing processes' carbon footprint. Developing next-generation drying technologies to dry moist porous media may require an understanding of removing moisture from a fully saturated porous material with excess water. This paper provides a fundamental understanding of heat and mass transfer in a fully saturated porous medium with excess water. This is relevant, for example, in drying tissue as well as pulp or paper for the purpose of thermal insulation where pressing is preferred to be avoided to overcome the reduction in the sheet thickness. For this purpose, a theoretical drying model is developed where the porous medium corresponds to paper and is assumed to be sandwiched between two excess-water layers (bottom and top). The conjugate model consists of energy and mass conservation equations for each layer. The model is validated with corresponding experimental data. In the model, the thickness of each water layer is calculated as a function of drying time based on local temperature and total moisture content. The numerical model is transient and one-dimensional in space (i.e., in the thickness direction). This paper demonstrates the governing equations, boundary conditions, and results when the saturated porous medium with water layers is heated from one side. Moisture and temperature profiles are estimated in the thickness direction of the porous medium as it dries.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDrying of a Fully Saturated Porous Medium With Excess Water Layers: A Numerical Study
    typeJournal Paper
    journal volume145
    journal issue2
    journal titleASME Journal of Heat and Mass Transfer
    identifier doi10.1115/1.4056068
    journal fristpage22701-1
    journal lastpage22701-10
    page10
    treeASME Journal of Heat and Mass Transfer:;2022:;volume( 145 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian