Show simple item record

contributor authorWiseman, Samuel
contributor authorGruber, Andrea
contributor authorDawson, James R.
date accessioned2023-08-16T18:20:38Z
date available2023-08-16T18:20:38Z
date copyright12/5/2022 12:00:00 AM
date issued2022
identifier issn0742-4795
identifier othergtp_145_03_031015.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291843
description abstractAmmonia is a promising hydrogen and energy carrier but also a challenging fuel to use in gas turbines, due to its low flame speed, limited flammability range, and the production of NOx from fuel-bound nitrogen. Previous experimental and theoretical work have demonstrated that partially dissociated ammonia (NH3/H2/N2 mixtures) can match many of the laminar flame properties of methane flames. Among the remaining concerns pertaining to the use of NH3/H2/N2 blends in gas turbines is their thermoacoustic behavior. This paper presents the first measurements of flame transfer functions (FTFs) for turbulent, premixed, and NH3/H2/N2-air flames and compares them to CH4-air flames that have a similar unstretched laminar flame speed and adiabatic flame temperature. FTFs for NH3/H2/N2 blends were found to have a lower gain than CH4 FTFs at low frequencies. However, the cutoff frequency was found to be greater, due to a shorter flame length. For both CH4 flames and NH3/H2/N2 flames, the confinement diameter was found to have a strong influence on peak gain values. Chemiluminescence resolved along the longitudinal direction shows a suppression of fluctuations when the flame first interacts with the wall followed by a subsequent recovery, but with a significant phase shift. Nevertheless, simple Strouhal number scalings based on the flame length and reactant bulk velocity at the dump plane result in a reasonable collapse of the FTF cutoff frequency and phase curves.
publisherThe American Society of Mechanical Engineers (ASME)
titleFlame Transfer Functions for Turbulent, Premixed, Ammonia-Hydrogen-Nitrogen-Air Flames
typeJournal Paper
journal volume145
journal issue3
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.4055754
journal fristpage31015-1
journal lastpage31015-11
page11
treeJournal of Engineering for Gas Turbines and Power:;2022:;volume( 145 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record