YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Open Journal of Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASME Open Journal of Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A 3-D Printed Optically Clear Rigid Diseased Carotid Bifurcation Arterial Mock Vessel Model for Particle Image Velocimetry Analysis in Pulsatile Flow

    Source: ASME Open Journal of Engineering:;2023:;volume( 002 )::page 21010-1
    Author:
    Stanley, Nicholas
    ,
    Ciero, Ashley
    ,
    Timms, William
    ,
    Hewlin, Rodward L., Jr.
    DOI: 10.1115/1.4056639
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In recent years, blood flow analyses of diseased arterial mock vessels using particle image velocimetry (PIV) have been hampered by the inability to fabricate optically clear anatomical vessel models that realistically replicate the complex morphology of arterial vessels and provide highly resolved flow images of flow tracer particles. The aim of this paper is to introduce a novel approach for producing optically clear 3-D printed rigid anatomical arterial vessel models that are suitable for PIV analysis using a common 3-D inkjet printing process (using a Formlabs Form 2 3-D printer) and stock clear resin (RS-F2-GPCL-04). By matching the index of refraction (IOR) of the working fluid to the stock clear resin material, and by printing the part in a 45-deg print orientation, a clear anatomical model that allows clear visualization of flow tracer particles can be produced which yields highly resolved flow images for PIV analyses. However, a 45-deg print orientation increases the need for post-processing due to an increased amount of printed support material. During post-processing, the part must be wet sanded in several steps and surface finished with Novus Plastic Polish 3 Step System to achieve the final surface finish needed to yield high-resolution flow images. The mock arterial vessel model produced in this work is a 3-D printed diseased carotid bifurcation artery developed from CTA scan data. A PIV analysis was conducted on the developed mock arterial vessel model installed in a complex transient flow loop to assess the flow profiles within the model and the clarity of the model. A computational fluid dynamics (CFD) simulation was conducted on the same carotid bifurcation arterial geometry, and the results were used as a benchmark comparison for PIV results. The results obtained in this work show excellent promise for using the developed approach for developing 3-D printed anatomical vessel models for experimental PIV analyses. The fabrication methodology of the clear anatomical models, PIV results, and CFD results is described in detail.
    • Download: (752.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A 3-D Printed Optically Clear Rigid Diseased Carotid Bifurcation Arterial Mock Vessel Model for Particle Image Velocimetry Analysis in Pulsatile Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291767
    Collections
    • ASME Open Journal of Engineering

    Show full item record

    contributor authorStanley, Nicholas
    contributor authorCiero, Ashley
    contributor authorTimms, William
    contributor authorHewlin, Rodward L., Jr.
    date accessioned2023-08-16T18:17:12Z
    date available2023-08-16T18:17:12Z
    date copyright1/27/2023 12:00:00 AM
    date issued2023
    identifier issn2770-3495
    identifier otheraoje_2_021010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291767
    description abstractIn recent years, blood flow analyses of diseased arterial mock vessels using particle image velocimetry (PIV) have been hampered by the inability to fabricate optically clear anatomical vessel models that realistically replicate the complex morphology of arterial vessels and provide highly resolved flow images of flow tracer particles. The aim of this paper is to introduce a novel approach for producing optically clear 3-D printed rigid anatomical arterial vessel models that are suitable for PIV analysis using a common 3-D inkjet printing process (using a Formlabs Form 2 3-D printer) and stock clear resin (RS-F2-GPCL-04). By matching the index of refraction (IOR) of the working fluid to the stock clear resin material, and by printing the part in a 45-deg print orientation, a clear anatomical model that allows clear visualization of flow tracer particles can be produced which yields highly resolved flow images for PIV analyses. However, a 45-deg print orientation increases the need for post-processing due to an increased amount of printed support material. During post-processing, the part must be wet sanded in several steps and surface finished with Novus Plastic Polish 3 Step System to achieve the final surface finish needed to yield high-resolution flow images. The mock arterial vessel model produced in this work is a 3-D printed diseased carotid bifurcation artery developed from CTA scan data. A PIV analysis was conducted on the developed mock arterial vessel model installed in a complex transient flow loop to assess the flow profiles within the model and the clarity of the model. A computational fluid dynamics (CFD) simulation was conducted on the same carotid bifurcation arterial geometry, and the results were used as a benchmark comparison for PIV results. The results obtained in this work show excellent promise for using the developed approach for developing 3-D printed anatomical vessel models for experimental PIV analyses. The fabrication methodology of the clear anatomical models, PIV results, and CFD results is described in detail.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA 3-D Printed Optically Clear Rigid Diseased Carotid Bifurcation Arterial Mock Vessel Model for Particle Image Velocimetry Analysis in Pulsatile Flow
    typeJournal Paper
    journal volume2
    journal titleASME Open Journal of Engineering
    identifier doi10.1115/1.4056639
    journal fristpage21010-1
    journal lastpage21010-9
    page9
    treeASME Open Journal of Engineering:;2023:;volume( 002 )
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian