YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Behavior of Gas Entrainment Inside Viscous Pool Due to Combined Influence of Symmetric Rotational Field and Freestream Flow of Air

    Source: Journal of Fluids Engineering:;2022:;volume( 145 ):;issue: 002::page 21402-1
    Author:
    Panda, Santosh Kumar
    ,
    Rana, Basanta Kumar
    DOI: 10.1115/1.4055881
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The present investigation elucidates the interfacial characterization caused by the simultaneous effect of a symmetric converging rotational field and continuous air stream flow above the free surface. The converging rotational field is developed by a couple of counter and equal rotating rollers fully immersed inside the viscous liquid medium and their centers are aligned along a horizontal line. Such phenomenon is abundantly encountered in various engineering devices, where the interactions and transfer of mass, momentum, and energy are quite important through gas–liquid interfaces. Behavior of entrainment profile is observed due to the influence of various relevant pertinent parameters, namely, rotational of speed (measured by Ca), submersion depth (b*), the gap between the rollers (2a*), and strength of air stream flow (measured by Reflow). An upper rounded structured interfacial configuration is obtained for all cases of Ca when the rollers are located very close to each other. The length of the entrainment of cusp decreases with the rise of Reflow for the same value of Ca. The value of Cac increases continuously with the increase of Reflow for a particular of 2a* and b*. Bubble ejection from filament tip and subsequent accumulation increases significantly with the rise of Ca for a particular case of Reflow. The cusp tip progressively traverses in upward direction with the continuous increase of gravitational pull for a particular value of Ca and Reflow. Entrainment length progressively grows with the continuous rise of viscous drag for a particular value of Ca and Reflow. Finally, an analytical formulation is proposed to analyze the structure of entrainment and this model reports an excellent match with the numerical findings.
    • Download: (5.145Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Behavior of Gas Entrainment Inside Viscous Pool Due to Combined Influence of Symmetric Rotational Field and Freestream Flow of Air

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291739
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorPanda, Santosh Kumar
    contributor authorRana, Basanta Kumar
    date accessioned2023-08-16T18:16:14Z
    date available2023-08-16T18:16:14Z
    date copyright11/1/2022 12:00:00 AM
    date issued2022
    identifier issn0098-2202
    identifier otherfe_145_02_021402.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291739
    description abstractThe present investigation elucidates the interfacial characterization caused by the simultaneous effect of a symmetric converging rotational field and continuous air stream flow above the free surface. The converging rotational field is developed by a couple of counter and equal rotating rollers fully immersed inside the viscous liquid medium and their centers are aligned along a horizontal line. Such phenomenon is abundantly encountered in various engineering devices, where the interactions and transfer of mass, momentum, and energy are quite important through gas–liquid interfaces. Behavior of entrainment profile is observed due to the influence of various relevant pertinent parameters, namely, rotational of speed (measured by Ca), submersion depth (b*), the gap between the rollers (2a*), and strength of air stream flow (measured by Reflow). An upper rounded structured interfacial configuration is obtained for all cases of Ca when the rollers are located very close to each other. The length of the entrainment of cusp decreases with the rise of Reflow for the same value of Ca. The value of Cac increases continuously with the increase of Reflow for a particular of 2a* and b*. Bubble ejection from filament tip and subsequent accumulation increases significantly with the rise of Ca for a particular case of Reflow. The cusp tip progressively traverses in upward direction with the continuous increase of gravitational pull for a particular value of Ca and Reflow. Entrainment length progressively grows with the continuous rise of viscous drag for a particular value of Ca and Reflow. Finally, an analytical formulation is proposed to analyze the structure of entrainment and this model reports an excellent match with the numerical findings.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleBehavior of Gas Entrainment Inside Viscous Pool Due to Combined Influence of Symmetric Rotational Field and Freestream Flow of Air
    typeJournal Paper
    journal volume145
    journal issue2
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4055881
    journal fristpage21402-1
    journal lastpage21402-17
    page17
    treeJournal of Fluids Engineering:;2022:;volume( 145 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian