YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Fractional Diffusion Equation Associated With Exponential Source and Operator With Exponential Kernel

    Source: Journal of Computational and Nonlinear Dynamics:;2023:;volume( 018 ):;issue: 005::page 51006-1
    Author:
    Nguyen, Anh Tuan
    ,
    Nguyen, Van Tien
    ,
    Baleanu, Dumitru
    ,
    Nguyen, Van Thinh
    DOI: 10.1115/1.4062198
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, we investigate the well-posedness of mild solutions of the time-fractional diffusion equation with an exponential source function and the Caputo-Fabrizio derivative of a fractional order α∈(0,1). Some linear estimates of the solution kernels on Hilbert scale spaces are constructed using a spectrum of the Dirichlet Laplacian. Based on the Banach fixed point theorem, the global existence and uniqueness of the small-data mild solution are approved. This work is considered the first study on the time-fractional diffusion equation with a nonlinear function for all common dimensions of 1, 2, and 3.
    • Download: (167.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Fractional Diffusion Equation Associated With Exponential Source and Operator With Exponential Kernel

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291636
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorNguyen, Anh Tuan
    contributor authorNguyen, Van Tien
    contributor authorBaleanu, Dumitru
    contributor authorNguyen, Van Thinh
    date accessioned2023-08-16T18:12:52Z
    date available2023-08-16T18:12:52Z
    date copyright4/5/2023 12:00:00 AM
    date issued2023
    identifier issn1555-1415
    identifier othercnd_018_05_051006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291636
    description abstractIn this paper, we investigate the well-posedness of mild solutions of the time-fractional diffusion equation with an exponential source function and the Caputo-Fabrizio derivative of a fractional order α∈(0,1). Some linear estimates of the solution kernels on Hilbert scale spaces are constructed using a spectrum of the Dirichlet Laplacian. Based on the Banach fixed point theorem, the global existence and uniqueness of the small-data mild solution are approved. This work is considered the first study on the time-fractional diffusion equation with a nonlinear function for all common dimensions of 1, 2, and 3.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn the Fractional Diffusion Equation Associated With Exponential Source and Operator With Exponential Kernel
    typeJournal Paper
    journal volume18
    journal issue5
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4062198
    journal fristpage51006-1
    journal lastpage51006-6
    page6
    treeJournal of Computational and Nonlinear Dynamics:;2023:;volume( 018 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian