YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Sensitivities to Fractal Machine Noises in a Mechanical Face Seal

    Source: Journal of Vibration and Acoustics:;2022:;volume( 145 ):;issue: 003::page 31001-1
    Author:
    Green, Itzhak
    DOI: 10.1115/1.4056194
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Mechanical face seals are wide spread in many applications of powered equipment and turbomachinery. Often machine vibration and noise are unavoidable because of changing conditions which can be persistent and forceful. In critical applications when seals fail, they may have significant or even catastrophic consequences. To ensure the safety of such machinery and its associated mechanical components, machine vibration and noise must be diagnosed and quantified to keep the system’s response within certain limits. This work focuses on the dynamics of a flexibly mounted stator mechanical face seal that is subjected to combinations of broad-band noisy vibrations of the shaft and the housing. In all previous work, the positions of the housing and the shaft have been considered fixed. The current work relaxes that condition, augmenting the equations of motion to incorporate equipment’s noisy vibrations. Noises are expediently produced by the Weierstrass–Mandelbrot (WM) fractal function. A numerical simulation ensues, and the time-domain responses are subject to spectral analyses. Results show that under some design conditions, the seal is largely insensitive to machine vibrations. However, under other conditions, the seal response to exterior machine noise exhibits a rich spectral content that stems from various transient phenomena that include intensified half-frequency whirl, near synchronous response at steady-state, and super-synchronous higher harmonic oscillations caused by face contact.
    • Download: (1.804Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Sensitivities to Fractal Machine Noises in a Mechanical Face Seal

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291622
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorGreen, Itzhak
    date accessioned2023-08-16T18:12:34Z
    date available2023-08-16T18:12:34Z
    date copyright12/12/2022 12:00:00 AM
    date issued2022
    identifier issn1048-9002
    identifier othervib_145_3_031001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291622
    description abstractMechanical face seals are wide spread in many applications of powered equipment and turbomachinery. Often machine vibration and noise are unavoidable because of changing conditions which can be persistent and forceful. In critical applications when seals fail, they may have significant or even catastrophic consequences. To ensure the safety of such machinery and its associated mechanical components, machine vibration and noise must be diagnosed and quantified to keep the system’s response within certain limits. This work focuses on the dynamics of a flexibly mounted stator mechanical face seal that is subjected to combinations of broad-band noisy vibrations of the shaft and the housing. In all previous work, the positions of the housing and the shaft have been considered fixed. The current work relaxes that condition, augmenting the equations of motion to incorporate equipment’s noisy vibrations. Noises are expediently produced by the Weierstrass–Mandelbrot (WM) fractal function. A numerical simulation ensues, and the time-domain responses are subject to spectral analyses. Results show that under some design conditions, the seal is largely insensitive to machine vibrations. However, under other conditions, the seal response to exterior machine noise exhibits a rich spectral content that stems from various transient phenomena that include intensified half-frequency whirl, near synchronous response at steady-state, and super-synchronous higher harmonic oscillations caused by face contact.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDynamic Sensitivities to Fractal Machine Noises in a Mechanical Face Seal
    typeJournal Paper
    journal volume145
    journal issue3
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4056194
    journal fristpage31001-1
    journal lastpage31001-14
    page14
    treeJournal of Vibration and Acoustics:;2022:;volume( 145 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian