YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Flutter Analysis of Labyrinth Seals

    Source: Journal of Turbomachinery:;2023:;volume( 145 ):;issue: 007::page 71007-1
    Author:
    Corral, Roque
    ,
    Greco, Michele
    ,
    Matabuena, Luis
    DOI: 10.1115/1.4056701
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A simple nonlinear model to describe labyrinth seal flutter has been developed to assess the aeromechanic stability of straight-through labyrinth seals subjected to large gap variations. The model solves the one-dimensional integral mass, momentum, and energy equations of the seal for a prescribed motion numerically until a periodic state is reached. The model accounts for the effect, previously neglected, of high clearance variations on the stability. The results show that when the vibration amplitudes are small, the work-per-cycle coincides with the prediction of the Corral and Vega model (2018, “Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models. Part I: Theoretical Background,” ASME J. Turbomach., 140(10), p. 121006) and Corral et al. (2021, “Higher-Order Conceptual Model for Seal Flutter,” ASME J. Turbomach., 143(7), p. 071006), but for large vibration amplitudes nonlinearities alter the stability limit. In realistic cases, when the discharge time of the seal is much longer than the vibration period, the nonlinear effects are significant and tend to increase the unstable range of operating conditions. Furthermore, seals supported either on the high-pressure or low-pressure sides, stable for small vibration amplitudes, can destabilize when the vibration amplitude increases. The linear stability, though close in many situations to the nonlinear threshold, is not conservative, and attention must be paid to nonlinear effects.
    • Download: (944.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Flutter Analysis of Labyrinth Seals

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291584
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorCorral, Roque
    contributor authorGreco, Michele
    contributor authorMatabuena, Luis
    date accessioned2023-08-16T18:11:23Z
    date available2023-08-16T18:11:23Z
    date copyright2/10/2023 12:00:00 AM
    date issued2023
    identifier issn0889-504X
    identifier otherturbo_145_7_071007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291584
    description abstractA simple nonlinear model to describe labyrinth seal flutter has been developed to assess the aeromechanic stability of straight-through labyrinth seals subjected to large gap variations. The model solves the one-dimensional integral mass, momentum, and energy equations of the seal for a prescribed motion numerically until a periodic state is reached. The model accounts for the effect, previously neglected, of high clearance variations on the stability. The results show that when the vibration amplitudes are small, the work-per-cycle coincides with the prediction of the Corral and Vega model (2018, “Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models. Part I: Theoretical Background,” ASME J. Turbomach., 140(10), p. 121006) and Corral et al. (2021, “Higher-Order Conceptual Model for Seal Flutter,” ASME J. Turbomach., 143(7), p. 071006), but for large vibration amplitudes nonlinearities alter the stability limit. In realistic cases, when the discharge time of the seal is much longer than the vibration period, the nonlinear effects are significant and tend to increase the unstable range of operating conditions. Furthermore, seals supported either on the high-pressure or low-pressure sides, stable for small vibration amplitudes, can destabilize when the vibration amplitude increases. The linear stability, though close in many situations to the nonlinear threshold, is not conservative, and attention must be paid to nonlinear effects.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNonlinear Flutter Analysis of Labyrinth Seals
    typeJournal Paper
    journal volume145
    journal issue7
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4056701
    journal fristpage71007-1
    journal lastpage71007-9
    page9
    treeJournal of Turbomachinery:;2023:;volume( 145 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian