YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effects of Hub Profile on the Aerodynamics of Integrated Intermediate Turbine Ducts

    Source: Journal of Turbomachinery:;2023:;volume( 145 ):;issue: 006::page 61012-1
    Author:
    Hou, Jiangdong
    ,
    Zhou, Chao
    DOI: 10.1115/1.4056580
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The integration design of the intermediate turbine ducts (ITDs) with the first row of the low-pressure turbine vane can significantly reduce the length of the turbine section, thus reducing the weight and drag of the aero-engine. This paper investigates the effects of the hub profile on the aerodynamic performance of integrated ITDs (IITDs). The flow features and loss mechanism of four IITDs are studied by experimental, numerical, and theoretical methods. In the baseline case, an open corner separation occurs near the hub-suction surface corner, which results in a significant loss. The loss is broken down into the parts generated by the mean vortex and turbulence theoretically. The open corner separation causes significant turbulence loss. To reduce the size of the separation zone, the positive radial/spanwise pressure gradient near hub is increased by moving the hub profile near the vane rear part slightly downward. As a result, a small closed corner separation with three-dimensional topology occurs instead of the open corner separation in the baseline case. The corner shape factor is defined to quantitatively describe the closed corner separation. When the hub profile moves further downward, the loss due to the corner separation reduces, but the loss generated in the vane passage away from hub increases mainly due to the mixing as the low-momentum flow near the hub transports toward the mid span. The change of the overall loss is subject to the combination of the two effects, and should be balanced during the design process.
    • Download: (1.446Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effects of Hub Profile on the Aerodynamics of Integrated Intermediate Turbine Ducts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291574
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorHou, Jiangdong
    contributor authorZhou, Chao
    date accessioned2023-08-16T18:11:02Z
    date available2023-08-16T18:11:02Z
    date copyright1/9/2023 12:00:00 AM
    date issued2023
    identifier issn0889-504X
    identifier otherturbo_145_6_061012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291574
    description abstractThe integration design of the intermediate turbine ducts (ITDs) with the first row of the low-pressure turbine vane can significantly reduce the length of the turbine section, thus reducing the weight and drag of the aero-engine. This paper investigates the effects of the hub profile on the aerodynamic performance of integrated ITDs (IITDs). The flow features and loss mechanism of four IITDs are studied by experimental, numerical, and theoretical methods. In the baseline case, an open corner separation occurs near the hub-suction surface corner, which results in a significant loss. The loss is broken down into the parts generated by the mean vortex and turbulence theoretically. The open corner separation causes significant turbulence loss. To reduce the size of the separation zone, the positive radial/spanwise pressure gradient near hub is increased by moving the hub profile near the vane rear part slightly downward. As a result, a small closed corner separation with three-dimensional topology occurs instead of the open corner separation in the baseline case. The corner shape factor is defined to quantitatively describe the closed corner separation. When the hub profile moves further downward, the loss due to the corner separation reduces, but the loss generated in the vane passage away from hub increases mainly due to the mixing as the low-momentum flow near the hub transports toward the mid span. The change of the overall loss is subject to the combination of the two effects, and should be balanced during the design process.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Effects of Hub Profile on the Aerodynamics of Integrated Intermediate Turbine Ducts
    typeJournal Paper
    journal volume145
    journal issue6
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4056580
    journal fristpage61012-1
    journal lastpage61012-10
    page10
    treeJournal of Turbomachinery:;2023:;volume( 145 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian