YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Unpacking Intermineral Synergies and Reactions During Dust Deposition in an Impingement Coolant Jet

    Source: Journal of Turbomachinery:;2022:;volume( 145 ):;issue: 005::page 51015-1
    Author:
    Nied, Eric P.
    ,
    Bons, Jeffrey P.
    ,
    Lundgreen, Ryan K.
    DOI: 10.1115/1.4056153
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper seeks to unpack synergies that exist between minerals during deposition of the heterogeneous AFRL02 mixture in gas turbine engines and demonstrate that the contributions of each mineral cannot be considered independently. In each experiment, one gram of mineral dust (0–10 µm particle diameter distribution) was injected into an 894 K, 57 m/s coolant flow impinging normally on a Hastelloy X plate with a surface temperature of 1033 K, 1144 K, or 1255 K. Capture efficiency measurements, deposit morphology analyses, and X-ray diffraction results are reported. Besides AFRL02, single mineral dusts, dual mineral dusts, and AFRL02-like dust blends lacking in one mineral were tested. The results of the experiments elucidate that the deposition behavior of single minerals indeed cannot explain the composite deposition of heterogeneous mixtures. For example, gypsum had the highest capture efficiency of any single mineral in ARFL02, and yet removing gypsum from AFRL02 counterintuitively raised the capture efficiency of that blend when compared to AFRL02. Quartz was found to erode albite deposits but stick to and build upon dolomite and halite deposits, even though quartz did not deposit significantly as a single mineral. Quartz also chemically reacted with gypsum and dolomite to form wollastonite and diopside, respectively. Finally, we found that the capture efficiency of each blend increased with plate temperature, but not according to the same trend. Results are interpreted through the lens of CaO–MgO–Al2O3–SiO2 eutectic chemistry, but the chemical pathways by which these eutectics come into existence is found to be of equal importance.
    • Download: (998.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Unpacking Intermineral Synergies and Reactions During Dust Deposition in an Impingement Coolant Jet

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291560
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorNied, Eric P.
    contributor authorBons, Jeffrey P.
    contributor authorLundgreen, Ryan K.
    date accessioned2023-08-16T18:10:39Z
    date available2023-08-16T18:10:39Z
    date copyright12/6/2022 12:00:00 AM
    date issued2022
    identifier issn0889-504X
    identifier otherturbo_145_5_051015.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291560
    description abstractThis paper seeks to unpack synergies that exist between minerals during deposition of the heterogeneous AFRL02 mixture in gas turbine engines and demonstrate that the contributions of each mineral cannot be considered independently. In each experiment, one gram of mineral dust (0–10 µm particle diameter distribution) was injected into an 894 K, 57 m/s coolant flow impinging normally on a Hastelloy X plate with a surface temperature of 1033 K, 1144 K, or 1255 K. Capture efficiency measurements, deposit morphology analyses, and X-ray diffraction results are reported. Besides AFRL02, single mineral dusts, dual mineral dusts, and AFRL02-like dust blends lacking in one mineral were tested. The results of the experiments elucidate that the deposition behavior of single minerals indeed cannot explain the composite deposition of heterogeneous mixtures. For example, gypsum had the highest capture efficiency of any single mineral in ARFL02, and yet removing gypsum from AFRL02 counterintuitively raised the capture efficiency of that blend when compared to AFRL02. Quartz was found to erode albite deposits but stick to and build upon dolomite and halite deposits, even though quartz did not deposit significantly as a single mineral. Quartz also chemically reacted with gypsum and dolomite to form wollastonite and diopside, respectively. Finally, we found that the capture efficiency of each blend increased with plate temperature, but not according to the same trend. Results are interpreted through the lens of CaO–MgO–Al2O3–SiO2 eutectic chemistry, but the chemical pathways by which these eutectics come into existence is found to be of equal importance.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUnpacking Intermineral Synergies and Reactions During Dust Deposition in an Impingement Coolant Jet
    typeJournal Paper
    journal volume145
    journal issue5
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4056153
    journal fristpage51015-1
    journal lastpage51015-12
    page12
    treeJournal of Turbomachinery:;2022:;volume( 145 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian