YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Attributes of Bi-Directional Turbomachinery for Pumped Thermal Energy Storage

    Source: Journal of Turbomachinery:;2022:;volume( 145 ):;issue: 003::page 31007-1
    Author:
    Chiapperi, J. D.
    ,
    Greitzer, E. M.
    ,
    Tan, C. S.
    DOI: 10.1115/1.4055647
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, we (i) present a methodology for determining the aerodynamic performance of bi-directional turbomachines for pumped thermal energy storage, i.e., turbomachines designed to operate as a compressor in one direction, and then as a turbine in the opposite direction, (ii) carry out performance computations for such turbomachines, and (iii) propose principles for conceptual design of these devices. Focus is placed on using the energy storage cycle not only to identify the novel requirements placed on bi-directional turbomachines but also to estimate the effect of these requirements on the efficiency of the energy storage process. In particular, the difference between aerodynamic loading in forward and in backward operation causes the blading to work at incidences leading to the performance below maximum efficiency, resulting in a lower round-trip efficiency. The description of the design principles includes determination of the number of stages, definition of nondimensional parameters for blading selection, and optimization of two-dimensional blading for bi-directional operation. The assessment of stage count shows the relationship between relative Mach number, pressure ratio, and round-trip efficiency. The nondimensional parameters are assessed through a bi-directional analogue to existing “Smith charts,” for the efficiency of single-direction turbomachines, as a function of camber and stagger. The blade shape evaluation and optimization show how the blade profile can be modified to address the requirements of a bi-directional turbomachine, enabling an increase in round-trip efficiency of two percentage points compared to a baseline double circular arc configuration.
    • Download: (799.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Attributes of Bi-Directional Turbomachinery for Pumped Thermal Energy Storage

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291518
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorChiapperi, J. D.
    contributor authorGreitzer, E. M.
    contributor authorTan, C. S.
    date accessioned2023-08-16T18:09:19Z
    date available2023-08-16T18:09:19Z
    date copyright10/17/2022 12:00:00 AM
    date issued2022
    identifier issn0889-504X
    identifier otherturbo_145_3_031007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291518
    description abstractIn this paper, we (i) present a methodology for determining the aerodynamic performance of bi-directional turbomachines for pumped thermal energy storage, i.e., turbomachines designed to operate as a compressor in one direction, and then as a turbine in the opposite direction, (ii) carry out performance computations for such turbomachines, and (iii) propose principles for conceptual design of these devices. Focus is placed on using the energy storage cycle not only to identify the novel requirements placed on bi-directional turbomachines but also to estimate the effect of these requirements on the efficiency of the energy storage process. In particular, the difference between aerodynamic loading in forward and in backward operation causes the blading to work at incidences leading to the performance below maximum efficiency, resulting in a lower round-trip efficiency. The description of the design principles includes determination of the number of stages, definition of nondimensional parameters for blading selection, and optimization of two-dimensional blading for bi-directional operation. The assessment of stage count shows the relationship between relative Mach number, pressure ratio, and round-trip efficiency. The nondimensional parameters are assessed through a bi-directional analogue to existing “Smith charts,” for the efficiency of single-direction turbomachines, as a function of camber and stagger. The blade shape evaluation and optimization show how the blade profile can be modified to address the requirements of a bi-directional turbomachine, enabling an increase in round-trip efficiency of two percentage points compared to a baseline double circular arc configuration.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAttributes of Bi-Directional Turbomachinery for Pumped Thermal Energy Storage
    typeJournal Paper
    journal volume145
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4055647
    journal fristpage31007-1
    journal lastpage31007-9
    page9
    treeJournal of Turbomachinery:;2022:;volume( 145 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian